Advertisement

The diagram lattice as structural principle in mathematics

  • Adalbert Kerber
Invited Lectures B. Concept of Symmetry and Disorder Arising from Molecular Physics
Part of the Lecture Notes in Physics book series (LNP, volume 79)

References

  1. 1.
    E. Ruch/A. Schönhofer: Theorie der Chiralitätsfunktionen. Theor. Chim. Acta 19 (1970), 225–287.Google Scholar
  2. 2.
    T. Brylawski: The lattice of integer partitions. Discrete Math. 6 (1973), 201–209.Google Scholar
  3. 3.
    C. Berge:Graphs and Hypergraphs. North-Holland Publishing Company 1973.Google Scholar
  4. 4.
    C.W. Curtis/I. Reiner: Representation theory of finite groups and associative algebras. Interscience Publishers, New York 1962.Google Scholar
  5. 5.
    A.J. Coleman: Induced representations with applications to Sn and GL(n). Lecture Notes prepared by C.J. Bradley. Queen's Papers in Pure and Applied Mathematics, no. 4. Queen's University, Kingston, Ontario, 1966.Google Scholar
  6. 6.
    H.J. Ryser: Combinatorial Mathematics. Wiley, New York 1963.Google Scholar
  7. 7.
    H.-R. Halder/W. Heise: Einführung in die Kombinatorik. Hanser, München, 1976.Google Scholar
  8. 8.
    E. Snapper:Group characters and nonnegative integral matrices. J. Algebra 19 (1971), 520–535.Google Scholar
  9. 9.
    R.A. Liebler/M.R. Vitale: Ordering the partition characters of the symmetric group. J. Algebra 25 (1973), 487–489.Google Scholar
  10. 10.
    S. J. Mayer: On the irreducible characters of the symmetric group. Advances in Math. 15 (1975), 127–132.Google Scholar
  11. 11.
    A. Mead: Symmetry and Chirality. Topics in Current Chemistry, vol. 49. Springer, Berlin, 1974.Google Scholar
  12. 12.
    A. Kerber: Representations of Permutation Groups I. Lecture Notes in Math., vol. 240, Springer, Berlin, 1971.Google Scholar
  13. 13.
    A. Kerber: Representations of Permutation Groups II. Lecture Notes in Math., vol. 495, Springer, Berlin, 1975.Google Scholar
  14. 14.
    J.S. Lomont: Applications of finite groups. Academic Press, New York 1959.Google Scholar
  15. 15.
    D. Kinch/L. Geissinger: Representations of the hyperoctahedral groups.(in preparation)Google Scholar
  16. 16.
    S.J. Mayer: On the characters of Weyl groups of type C. J. Algebra 33 (1975), 59–67.Google Scholar
  17. 17.
    A. Kerber/J. Tappe: On permutation characters of wreath products. Discrete Math. 15 (1976), 151–161.Google Scholar
  18. 18.
    A. Kerber: Zur Theorie der M-Gruppen. Math. Z. 115 (1970), 4–6.Google Scholar
  19. 19.
    F. Sänger: Einige Charakterentafeln von Symmetrien symmetrischer Gruppen. Mitt. math. Sem. Univ. Giessen 98 (1973), 21–38.Google Scholar
  20. 20.
    B. Gretschel/A. Hilge: Berechnung der Charakterentafeln von Symmetrien symmetrischer Gruppen. Diplomarbeiten, Giessen 1973.Google Scholar
  21. 21.
    A. Mead/E. Ruch/A. Schönhofer: Theory of Chirality Functions, Generalized for Molecules with chiral Ligands. Theor. Chim. Acta 29 (1973), 269–304.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Adalbert Kerber
    • 1
  1. 1.Lehrstuhl D für MathematikAachenGermany

Personalised recommendations