Kinematical symmetries in molecular quantum mechanics

  • H. Primas
Invited Lectures B. Concept of Symmetry and Disorder Arising from Molecular Physics
Part of the Lecture Notes in Physics book series (LNP, volume 79)


Unitary Representation Primary State Compact Abelian Group Universal Theory Primary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    H.Weyl, “Quantenmechanik und Gruppentheorie”. Z.Phys. 46,1–46 (1927)Google Scholar
  2. [2]
    H.Weyl, “Gruppentheorie und Quantenmechanik”. Hirzel, Leipzig, 1928. [Translation 0f the second German edition: ”The theory 0f groups and quantum mechanics”. Methuen, London, 1931; reprint: Dover, New York, 1950.]Google Scholar
  3. [3]
    A.S.Wightman, “On the localizability 0f quantum mechanical systems”. Rev.Mod.Phys. 34,845–872 (1962).Google Scholar
  4. [4]
    J.M.Lévy-Leblond, “Galilei group and Galilean invariance”. In: “ Group theory and its applications”, vol.2, ed. by E.M.Loebl. Academic Press, New York, 1971; pp.221–299.Google Scholar
  5. [5]
    U.Uhlhorn, “Representations 0f symmetry transformations in quantum mechanics”. Arkiv för Fysik 23,307–340 (1962).Google Scholar
  6. [6]
    G.Emch, C.Piron, “Symmetry in quantum theory”. J.Math.Phys.(N.Y.) 4,469–473 (1963)Google Scholar
  7. [7]
    P.Kruszyński, “Automorphisms 0f quantum logics”. Reports 0n Mathematical Physics 10,213–217 (1976).Google Scholar
  8. [8]
    H.Primas, U.Müller-Herold, “Quantum mechanical system theory”. Advances in Chemical Physics, Wiley-Interscience, New York, in press.Google Scholar
  9. [9]
    H.Primas, “Theory reduction and non-Boolean theories”. J.Math.Biology 4,281–301 (1977)Google Scholar
  10. [10]
    D.Hume, “Enquiry concerning human understanding”. London, 1758.Google Scholar
  11. [11]
    S.Watanabe, “Knowing and guessing”. Wiley, New York, 1969.Google Scholar
  12. [12]
    J.M.Jauch, B.Misra, “Supersymmetries and essential observables”. Helv.Phys.Acta 34,699–709 (1961).Google Scholar
  13. [13]
    I.M.Gel'fand, N.A.Vilenkin, “Generalized functions, vol.4”. Academic Press, New York, 1964.Google Scholar
  14. [14]
    K.Maurin, “Allgemeine Eigenfunktionsentwicklungen, unitäre Darstellungen lokalkompakter Gruppen und automorphe Funktionen”. Math. Annalen 165,204–222 (1966).Google Scholar
  15. [15]
    F.Combes, “Sur les états factoriels dune C*-algèbre”. Compt.Rend. (Paris) A265,736–739 (1967).Google Scholar
  16. [16]
    L.Mirsky, “Results and problems in the theory of doubly-stochastic matrices”. Z.Wahrscheinlichkeitstheorie 1,319–334 (1963).Google Scholar
  17. [17]
    J.V.Ryff, “On the representation of doubly stochastic operators”. Pacific J.Math. 13,1379–1386 (1963).Google Scholar
  18. [18]
    J.V.Ryff, “Orbits of L1-functions under doubly stochastic transformations”. Trans.Amer.Math.Soc. 117,92–100 (1965).Google Scholar
  19. [19]
    W.A.J.Luxemburg, “Rearrangement-invariant Banach function spaces”. Proc.Symp.Analysis, Queen's University Kingston, Ontario; Queen's Papers Pure Appl.Math. 10,83–144(1967).Google Scholar
  20. [20]
    K.-M.Chong, “Spectral inequalities involving the infima and suprema of functions”. Pacific J.Math. 59,17–20 (1975).Google Scholar
  21. [21]
    G.H.Hardy, J.E.Littlewood, G.Pólya, “Inequalities”. Cambridge University Press, Cambridge, first edition 1934, second edition 1952.Google Scholar
  22. [22]
    K.-M.Chong, “Doubly stochastic operators and rearrangement theorems”. J.Math.Anal.Appl. 56,309–316 (1976).Google Scholar
  23. [23]
    E.Ruch, “The diagram lattice as structural principle”. Theor.Chim. Acts. 38,167–183 (1975). [Compare also the contribution by E.Ruch in this volume].Google Scholar
  24. [24]
    G.W.Mackey, “Infinite-dimensional group representations”. Bull.Amer. Math.Soc. 69,628–686 (1963).Google Scholar
  25. [25]
    G.W.Mackey, “The theory of unitary group representations”. The University of Chicago Press, Chicago, 1976.Google Scholar
  26. [26]
    A.A.Kirillov, “Elements of the theory of representations”. Springer, Berlin, 1976.Google Scholar
  27. [27]
    A.J.Coleman, “Induced and subduced representations”. In: “Group theory and its applications”, ed. by E.M.Loebl, Academic Press, New York, 1968; pp.57–129.Google Scholar
  28. [28]
    G.G.Emch, “Algebraic methods in statistical mechanics and quantum field theory”. Wiley-Interscience, New York, 1972.Google Scholar
  29. [29]
    P.A.M. Dirac, “The principles of quantum mechanics”. Clarendon Press, Oxford, 1st ed. 1930, 4th ed. 1958.Google Scholar
  30. [30]
    J.M.Jauch, “Systems of observables in quantum mechanics”. Helv. Phys.Acta 33,711–720 (1960).Google Scholar
  31. [31]
    E.Chen, “Entropy and superposition principle”. Reports on Mathematical Physics 11,189–195 (1977).Google Scholar
  32. [32]
    H.Weyl, “The classical groups”. Princeton University Press, Princeton, N.J., 1939.Google Scholar
  33. [33]
    F.Klein, “Vergleichende Betrachtungen über neuere geometrische Forschungen”. Erlangen, 1872. Reprinted in: Math-Annalen 43,63–100 (1893).Google Scholar
  34. [34]
    B.Russel, “Mathematical logic as based on the theory of types”. Amer.J.Math. 30,222–262 (1908).Google Scholar
  35. [35]
    G.Ryle, “The concept of mind”. London, 1949.Google Scholar
  36. [36]
    M.Pavel, “Pattern recognition categories”. Pattern Recognition 8, 115–118 (1976).Google Scholar
  37. [37]
    M.Takesaki, “Disjointness of the KMS-states of different temperatures”. Commun.Math.Phys. 17,33–41 (1970).Google Scholar
  38. [38]
    L.Rosenfeld, “Foundations of quantum theory and complementarity”. Nature 190,384–388 (1961).Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. Primas
    • 1
  1. 1.Laboratorium für physikalische Chemie der ETHZürichSwitzerland

Personalised recommendations