The spectral transform NS a tool for solving nonlinear discrete evolution equations

Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 98)


Toda Lattice Volterra System Inverse Scattering Problem Spectral Transform Nonlinear Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Levy and F. Lessman. Finite Difference Equations, Macmillan, New York, 1961.Google Scholar
  2. 1.a
    E. Pinney. Ordinary Difference-Differential Equations, Univ. of California Press, New York, 1953.Google Scholar
  3. 1.b
    R. Bellman and K.L. Cooke. Differential-Difference Equations, Academic Press, New York, 1963.Google Scholar
  4. 1.c
    G. Innis. Dynamical analysis in “Soft Science” studies; in defence of difference equations, in Lecture Notes in Biomathenatics 2 (S. Levin ed.), Springer Verlag, Berlin 1974, pp. 102–122.Google Scholar
  5. 2.
    E. Fermi, J.R. Pasta and S.M. Ulam. Studies of nonlinear problems, in Collected Papers of E. Fermi, Univ. of Chicago Press, Chicago, 1965, vol.II, pp.977–988.Google Scholar
  6. 2.a
    N.J. Zabusky. A synergetic approach to problems of nonlinear dispersive waves propagation and interaction, in Proc. Symp. on Nonlinear Partial Differential Equations (W.F. Ames, ed.), Academic Press, New York, 1967, pp.223–258.Google Scholar
  7. 2.b
    N.J. Zabusky and H.D. Kruskal. Interaction of “Solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965).Google Scholar
  8. 3.
    M. Toda. Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 22, 431–436 (1967).Google Scholar
  9. 3.a
    M. Toda. Wave propagation in anharmonic lattice, J. Phys. Soc. Japan 23, 501–506 (1967).Google Scholar
  10. 3.b
    M. Toda. Mechanics and statistical mechanics of nonlinear chains, in Proc. of the International Conference on Statistical Mechanics, Kyoto 1968, Suppl. J. Phys. Soc. Japan 26, 235–237 1969Google Scholar
  11. 3.c
    M. Toda. Waves in nonlinear lattice, Suppl. Progr. Theor. Phys. 45, 174–200 (1970).Google Scholar
  12. 3.d
    M. Toda and M. Wadati. A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Japan 34, 13–25 (1973).Google Scholar
  13. 3.e
    R. Hirota. Exact N-soliton solution of a nonlinear lumped network equation, J. Phys. Soc. Japan 35, 236–283 (1973).Google Scholar
  14. 3.f
    M. Hénon. Integrals of the Toda lattice, Phys. Rev. B9, 1921–1923 (1974)Google Scholar
  15. 3.g
    H. Flaschka. The Toda lattice I, existance of integrals, Phys. Rev. B9, 1924–1925 (1974).Google Scholar
  16. 3.h
    H. Flaschka. On the Toda lattice II-Inverse scattering solution, Prog. Theor. Phys. 51, 703–716 (1974).Google Scholar
  17. 3.i
    M. Kac and P. van Moerbeke. On an explicit soluble systems of nonlinear differential equations related to certain Toda lattice, Advan. Math. 16, 160–169 (1975).Google Scholar
  18. 3.j
    M. Kac and P. van Moerbeke. On some periodic Toda lattice, Proc. Nat. Acad. Sci. U.S.A. 72, 1627–1629 (1975).Google Scholar
  19. 3.k
    M. Toda. Studies in a non-linear lattice, Phys. Reports 13C, 1–125 (1975).Google Scholar
  20. 3.l
    E. Date and S. Tanaka. Analogue of the inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Prog. Theor. Phys. 55, 457–465 (1976).Google Scholar
  21. 3.m
    M. Toda. Development of the theory of a nonlinear lattice, Suppl. Progr. Theor. Phys. 59, 1–35 (1976).Google Scholar
  22. 3.n
    R. Hirota and J. Satsuma. A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice, Suppl. Prog. Theor. Phys. 59, 64–100 (1976).Google Scholar
  23. 3.o
    K. Sawada and T. Kotera. Toda lattice as an integrable system and the uniqueness of Toda's potential, Suppl. Prog. Theor. Phys. 59, 101–106 (1976).Google Scholar
  24. 3.p
    M. Toda, R. Hirota and J. Satsuma. Chopping phenomena of a nonlinear system, Suppl. Prog. Theor. Phys. 59, 148–161 (1976).Google Scholar
  25. 3.q
    H. Flaschka and D.W. McLaughlin. Canonically conjugate variables for the Korteweg-deVries equation and the Toda lattice with periodic boundary conditions, Prog. Theor. Phys. 55, 438–456 (1976).Google Scholar
  26. 3.r
    B.A.Dubrovin, V.B. Matveev and S.P. Novikov. Nonlinear equations of Korteweg-de Dries type, finite-zone linear operators, and abelian varieties, Russian Math. Surveys 31, 59–146 (1976).Google Scholar
  27. 3.s
    R. Hirota. Nonlinear partial difference equations II — Discrete Toda equation, J. Phys. Soc. Japan 43, 2074–2078 (1977).Google Scholar
  28. 3.t
    R.K. Dodd. Generalized Bäcklund transformation for some nonlinear partial difference equations, J. Phys. A11, 81–91 (1978).Google Scholar
  29. 4.
    R. Hirota and K. Suzuki. Studies on lattice solitons by using electric networks, J. Phys. Soc. Japan 28, 1336–1337 (1970).Google Scholar
  30. 4.a
    R. Hirota. Exact N-soliton solution of nonlinear lumped self-dual network equations, J. Phys. Soc. Japan 35, 289–294 (1973).Google Scholar
  31. 5.
    V.E. Zakharov, S.L. Musher and A.M. Rubenchik. Nonlinear stage of parametric wave excitation in a plasma, Sov. Phys. J.E.P.T. Lett. 19, 151–152 (1974).Google Scholar
  32. 6.
    E.C. Titchmarsh. Theory of Fourier integrals, Oxford Univ. Press Oxford 1937, pp.298–301.Google Scholar
  33. 6.a
    E.C. Titchmarsh. Solutions of some functional equations, J. London Math. Soc. 14, 118–124 (1939).Google Scholar
  34. 7.
    F. Calogero. Spectral Transform and nonlinear evolution equations, on this same issue, pp. 29.Google Scholar
  35. 7.a
    A. Degasperis. Spectral Transform and solvability of nonlinear evolution equations, on this same issue, pp. 35.Google Scholar
  36. 8.
    K.M. Case and M. Kac. A discrete version of the Inverse Scattering problem. J. Math. Phys. 14, 594–603 (1973).Google Scholar
  37. 8.a
    K.M. Case. On discrete Inverse Scattering problem II, J. Math. Phys. 14, 916–920 (1973).Google Scholar
  38. 8.b
    K.M. Case and S.C. Chiu. The discrete version of the Marchenko equations in the Inverse Scattering problem. J. Math. Phys. 14, 1643–1647 (1973).CrossRefGoogle Scholar
  39. 8.c
    K.M. Case. The discrete Inverse Scattering problem in one dimension, J. Math. Phys. 15, 143–146 (1974).Google Scholar
  40. 8.d
    K.M. Case. Fredholm determinants and multiple solitons, J. Math. Phys. 17, 1703–1706 (1976).Google Scholar
  41. 9.
    Here, and allways in the following, subscripts indicate partial differentiation: ut = ∂u/∂t, etc.Google Scholar
  42. 10.
    M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations, J. Math. Phys. 16, 598–603 (1975).Google Scholar
  43. 10.a
    M.J. Ablowitz and J.F. Ladik. Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys. 17, 1011–1018 (1976).Google Scholar
  44. 10.b
    M.J. Ablowitz and J.F. Ladik. A nonlinear difference scheme and Inverse Scattering, Stud. Appl. Math. 55, 213–229 (1976).Google Scholar
  45. 10.c
    M.J. Ablowitz. Nonlinear evolution equations-continuous and discrete, Siam Review 19, 663–684 (1977).Google Scholar
  46. 10.d
    M.J. Ablowitz. Lectures on the Inverse Scattering transform, Stud. Appl. Math. 58, 17–94 (1978).Google Scholar
  47. 11.
    V. Zakharov and A.B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet. Phys. J.E.P.T. 34, 62–69 (1972).Google Scholar
  48. 12.
    S.C. Chiu and J.F. Ladik. Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique, J. Math. Phys. 18, 690–700 (1977).Google Scholar
  49. 13.
    For another method of obtaining the nonlinear discrete evolution equations, see the works of ref. 8Google Scholar
  50. 14.
    M. Wadati. The exact solution of the Modified Korteweg-deVries equation, J.Phys. Soc. Japan 32, 1681 (1972).Google Scholar
  51. 15.
    M. Bruschi, D. Levi and 0. Ragnisco. Spectral Transform approach to a discrete version of the Modified Korteweg-de Vries equation with x-dependent coefficients, sent to the Il Nuovo Cimento for pubblication.Google Scholar
  52. 16.
    M. Wadati. Transformation theories for nonlinear discrete systems, Suppl. Prog. Theor. Phys. 59, 36–63 (1976).Google Scholar
  53. 17.
    A. Noguchi, H. Watanabe and K. Sakai. Shock waves and hole type solitons of nonlinear selfdual network equation, J. Phys. Soc. Japan 43, 1441–1446 (1977).Google Scholar
  54. 18.
    V. Volterra. Lecons sur la théorie mathématigue de la lutte pour la vie, Gautier-Villars, Paris 1931.Google Scholar
  55. 18.a
    R. Hirota and J. Satsuma. N-solitons solutions of nonlinear network equations describing a Volterra system, J. Phys. Soc. Japan 40, 391–900 (1976).Google Scholar
  56. 18.b
    S. Fujii, F. Kako and N. Mugibayashi. Inverse method applied to the solution of nonlinear network equations describing a Volterra system, J. Phys. Soc. Japan 42, 335–340 (1977).Google Scholar
  57. 18.c
    J.F. Ladik and S.C. Chiu. Solution of nonlinear network equations by the Inverse Scattering method, J. Math. Phys. 18, 701–704 (1977).Google Scholar
  58. 18.d
    M. Wadati and M. Watanabe. Conservation laws of a Volterra system and nonlinear self-dual network equations, Prog. Theor. Phys. 57, 808–811 (1977).Google Scholar
  59. 19.
    G.F. Carrier and C.E. Pearson. Partial differential equations, theory and technique, Academic Press, New York 1976.Google Scholar
  60. 20.
    D. Levi and O. Ragnisco. Extension of the Spectral Transform method for solving nonlinear differential-difference equations, Lett. Nuovo Cimento (1973), 22 691–696.Google Scholar
  61. 21.
    M. Bruschi, D. Levi and O. Ragnisco. Spectral Transform approach to a discrete version of the nonlinear Schrödinger equation with x-dependent coefficients, in preparation.Google Scholar
  62. 22.
    J.C. Fernandez and G. Reinisch. Collapse of a Volterra soliton into a weak monotone shock wave, Physica A (1978) in press.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. Levi
    • 1
    • 2
  1. 1.Istituto di FisicaUniversita di RomaRomaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di RomaItaly

Personalised recommendations