Propagation of sound and ultrasound in non-homogeneous media

  • Sébastien M. Candel
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 112)


This paper describes numerical techniques which may be used to analyse (acoustic) wave motion in non-homogeneous media. The methods specifically considered are based on (1) one dimensional direct and inverse scattering theory (2) the parabolic approximation (3) the geometrical approximation (4) direct Fourier synthesis of the wave field.


Reflection Coefficient Sound Speed Refraction Index Geometrical Approximation Parabolic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.B. WHITHAM — Linear and Nonlinear Waves, John Wiley, New York (1974).Google Scholar
  2. 2.
    M.J. LIGHTHILL — Waves in fluids, Cambridge University Press, Cambridge (1978).Google Scholar
  3. 3.
    P.M. MORSE & K.U. INGARD — Theoretical Acoustics. Mc Grew Hill, N.Y. (1968).Google Scholar
  4. 4.
    J. MIKLOWITZ — The theory of Elastic Waves and Waveguides. North Holland, Amsterdam (1978).Google Scholar
  5. 5.
    J.D. ACHENBACH — Wave Propagation in Elastic Solids. North Holland, Amsterdam (1975).Google Scholar
  6. 6.
    C.B. OFFICER — Introduction to Sound Transmission. Mc Grew Hill, N.Y. (1958).Google Scholar
  7. 7.
    W.N. EWING, W.S. JARDETZKY & F. PRESS. Elastic Waves in Layered Media. Mc Grew Hill N.Y. (1957).Google Scholar
  8. 8.
    L.M. BREKHOVSKIKH — Waves in layered media. Academic Press N.Y. (1960).Google Scholar
  9. 9.
    M. KLINE & I.W. KAY — Electromagnetic theory and geometrical optics. John Wiley, N.Y. (1965).Google Scholar
  10. 10.
    L.B. FELSEN & N. MARCUVITZ — Radiation and scattering of waves. Prentice Hall, Englewood Cliffs (1973).Google Scholar
  11. 11.
    D. MARCUSE — Light transmission optics. Van Nostrand N.Y. (1972).Google Scholar
  12. 12.
    J.F. CLAERBOUT — Fundamentals of geophysical data processing. Mc Grew N.Y. (1976).Google Scholar
  13. 13.
    S.M. CANDEL — Analyse theorique et experimentale de la propagation acoustique en milieu inhomogbne at en mouvement. Thése de Doctorat es Sciences. Univ. de Paris VI (1977). ONERA Publication 1/1977.Google Scholar
  14. 14.
    S.M. CANDEL — Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics. J. Fluid Mach. 83 (1977), 465–493.Google Scholar
  15. 15.
    S.M. CANDEL — Numerical solution of wave scattering problems in the parabolic approximation. J. Fluid Mach. 90 (1979) 465–507.Google Scholar
  16. 16.
    S.M. CANDEL — F. DEFILLIPI & A. LAUNAY-Determination of the inhomogeneous structure of a medium from its plane wave reflection response. Part 1 and 2. Submitted to J. Sound Vib. (1979).Google Scholar
  17. 17.
    S.M. CANDEL & C. CRANCE. Direct Fourier synthesis of wave fields in layered media. To be published (1979).Google Scholar
  18. 18.
    P.D. LAX & R.S. PHILIPPS — Scattering theory.Academic Press N.Y. (1967).Google Scholar
  19. 19.
    M. ROSEAU — Asymptotic wave theory. North Holland, Amsterdam (1976).Google Scholar
  20. 20.
    K. CHADAN & P.C. SABATIER — Inverse problems in quantum scattering theory. Springer N.Y (1977).Google Scholar
  21. 21.
    F. TAPPERT — The parabolic approximation method in wave propagation and Underwater Acoustics, J.B. KELLER & J.S. PAPADAKIS ed. Springer, Berlin (1977).Google Scholar
  22. 22.
    B.F. BUXTON — The elastic scattering of fast electrons. This volume.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Sébastien M. Candel
    • 1
    • 2
  1. 1.Office National d'Etudes et de Recherches AerospatialesChâtillonFrance
  2. 2.Ecole Centrale des Arts et ManufacturesChatenay-Malabry

Personalised recommendations