Coherent structures in turbulent flow

  • P.G. Saffman
Session I - Theory
Part of the Lecture Notes in Physics book series (LNP, volume 136)


Coherent Structure Vortex Ring Point Vortex Internal Boundary Layer Vortex Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Synge, J.L. & Lin, C.C. On a statistical model of isotropic turbulence. Transactions Royal Society of Canada, Sec. III, p45–79. (1943)Google Scholar
  2. [2]
    Townsend, A.A. On the fine-scale structure of turbulence. Proc. Roy. Soc. A208, p534–542. (1951)ADSGoogle Scholar
  3. [3]
    Batchelor, G.K. & Townsend, A.A. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. A199, p238–255. (1949)ADSGoogle Scholar
  4. [4]
    Van Atta, C.W. & Antonia, R.A. Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23, p252–257. (1980)CrossRefADSGoogle Scholar
  5. [5]
    Landau L.D. & Lifshitz, E.M. Fluid Mechanics, Pergamon. Footnote p126.Google Scholar
  6. [6]
    Saffman, P.G. Lectures on Homogeneous Turbulence. Topics in NonLinear Physics (Ed. N. Zabusky) Springer-Verlag p485–614. (1966)Google Scholar
  7. [7]
    Tennekes, H. Simple model of the small-scale structure of turbulence. Physics of Fluids 11, p669–670. (1968)CrossRefADSGoogle Scholar
  8. [8]
    Norbury, J. A family of steady vortex rings. J. Fluid Mech. 57, p417–431. (1973)zbMATHCrossRefADSGoogle Scholar
  9. [9]
    Moore, D.W. & Saffman, P.G. The motion of a vortex filament with axial flow. Phil. Trans. Roy. Soc. A272, p403–429. (1972)CrossRefADSGoogle Scholar
  10. [10]
    Oshima, Y. & Asaka, S. Interaction of two vortex rings moving side by side. Nat. Sci. Rep. Ochanomizu Univ. 26, p31–37. (1975)Google Scholar
  11. [11]
    Oshima, Y. The game of passing through of a pair of vortex rings. J. Phys. Soc. Japan 45, p660–664. (1978)ADSCrossRefGoogle Scholar
  12. [12]
    Scorer, R.S. & Davenport L.J. Contrails and aircraft downwash. J. Fluid Mech. 43, p451–464. (1970)CrossRefADSGoogle Scholar
  13. [13]
    Soward, A.M. & Priest, E.R. Fast magnetic field line reconnection. Phil. Trans. Roy. Soc. A284, p369–417 (1977)CrossRefADSGoogle Scholar
  14. [14]
    Schlayer, K. Über die Stabilität der Karmanschen Wirbelstrasse gegenüber beliebigen Störungen in drei Dimensionen. Z.A.M.M. 8, p352–372. (1928)zbMATHGoogle Scholar
  15. [15]
    Rosenhead, L. The spread of vorticity in the wake behind a cylinder. Proc. Roy. Soc. A127, p590–612. (1930)CrossRefADSGoogle Scholar
  16. [16]
    Crow, S.C. Stability theory for a pair of trailing vortices. A.I.A.A. J. 8, p2172–2179. (1970)ADSGoogle Scholar
  17. [17]
    Jimenez, J. Stability of a pair of co-rotating vortices. Phys. Fluids 18, p1580–1581. (1975)zbMATHCrossRefADSGoogle Scholar
  18. [18]
    Moore, D.W. & Saffman, P.G. The instability of a straight vortex filament in a strain field. Proc. Roy. Soc. A346, p413–425. (1975)ADSMathSciNetGoogle Scholar
  19. [19]
    Pierrehumbert, R.T. The structure and stability of large vortices in an inviscid flow. M.T.T. Fluid Dynamics Lab. Rep. 80–1 (1980)Google Scholar
  20. [20]
    Saffman, P.G. & Szeto, R. Structure of a linear array of uniform vortices. Stud. in App. Math. (to appear). (1980)Google Scholar
  21. [21]
    Kiya, M. & Arie, M. Formation of vortex streets in shear flow. App. Sci. Res. 34, p313–339. (1978)zbMATHCrossRefGoogle Scholar
  22. [22]
    Kiya, M. & Arie, M. Helmholtz instability of a vortex sheet in uniform shear flow. Phys. Fluids 22, p378–379. (1979)CrossRefADSGoogle Scholar
  23. [23]
    Taganov, G.I. & Dudoladov I.V. Application of results of analysis of transient vortex flows of ideal fluids to description of the turbulent mixing layer. Fluid Mech. Sov. Res. 7, p10–23. (1978)ADSMathSciNetGoogle Scholar
  24. [24]
    Coles, D. Interfaces and intermittency in turbulent shear flow. Mecanique de la Turbulence p229–250. (1961)Google Scholar
  25. [25]
    Koschmieder, E.L. Turbulent Taylor vortex flow. J. Fluid Mech. 93, p515–527. (1979)CrossRefADSGoogle Scholar
  26. [26]
    Pierrehumbert, R.T. & Widnall, S.E. The structure of organized vortices in a shear layer. A.I.A.A. Paper 79–1560. (1979)Google Scholar
  27. [27]
    Saffman, P.G. & Szeto, R. Equilibrium shapes of a pair of equal uniform vortices. (1980)Google Scholar
  28. [28]
    Onufriyev, A.T. Model equation for the probability density in the semi-empirical theory of turbulent transport. Fluid Mechanics Sov. Res. 7, p143–152. (1978)zbMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P.G. Saffman
    • 1
  1. 1.Applied Mathematics California Institute of TechnologyUSA

Personalised recommendations