Turbulent structures in wall-bonded shear flows observed via three-dimensional numerical simulations

  • A. Leonard
Session I - Theory
Part of the Lecture Notes in Physics book series (LNP, volume 136)


Laminar Boundary Layer Subgrid Scale Turbulent Channel Flow Vortex Filament Wall Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. WRAY AND M. Y. HUSSAINI, “Numerical Experiments in Boundary-Layer Stability, AIAA Paper 80-0275, AIAA 18th Aerospace Sciences Meeting, Pasadena, Calif., 1980.Google Scholar
  2. 2.
    S. A. ORSZAG and L. C. KELLS, J. Fluid Mech. 96 (1980), 159.zbMATHCrossRefADSGoogle Scholar
  3. 3.
    L. S. G. KOVASZNAY, H. KOMODA, AND B. R. VASUDEVA, “Detailed Flow Field in Transition,” Proceedings of the 1962 Heat Transfer and Fluid Mechanics Institute, 1962, pp. 1–26.Google Scholar
  4. 4.
    A. LEONARD, “Vortex Simulation of Three-Dimensional, Spotlike Disturbances in a Laminar Boundary Layer,” in Turbulent Shear Flows II, L. J. S. Bradbury et al., eds., Springer-Verlag, Berlin, 1980, pp. 67–77.Google Scholar
  5. 5.
    A. LEONARD, J. Comput. Phys. (1980).Google Scholar
  6. 6.
    I. WYGNANSKI, M. SOKOLOV, and D. FRIEDMAN, J. Fluid Mech. 78 (1976), 785.CrossRefADSGoogle Scholar
  7. 7.
    B. CANTWELL, D. COLES, and P. DIMOTAKIS, J. Fluid Mech. 87 (1978), 641.CrossRefADSGoogle Scholar
  8. 8.
    S. J. KLINE, W. C. REYNOLDS, F. A. SCHRAUB, and P. W. RUNSTADLER, J. Fluid Mech. 30 (1967), 741.CrossRefADSGoogle Scholar
  9. 9.
    M. GAD-EL-HAK, R. F. BLACKWELDER, and J. J. RILEY, “A Visual Study of the Growth and Entrainment of Turbulent Spots,” Proceedings of IUTAM Symposium on Transition, Stuttgart, Germany, 1979.Google Scholar
  10. 10.
    J. KIM and P. MOIN, “Large Eddy Simulation of Turbulent Channel Flow — ILLIAC IV Calculation,” Proceedings of AGARD Symposium on Turbulent Boundary Layer — Experiment, Theory, and Modelling, The Hague, Netherlands, Sept. 24–27, 1979.Google Scholar
  11. 11.
    P. MOIN, W. C. REYNOLDS, and J. H. FERZIGER, “Large Eddy Simulation of Incompressible Channel Flow,” Report No. TF-12, Mechanical Engineering Department, Stanford U., Stanford, Calif., 1978.Google Scholar
  12. 12.
    R.-S. BRODKEY, J. M. WALLACE, and H. ECKELMANN, J. Fluid Mech. 63 (1974), 209.CrossRefADSGoogle Scholar
  13. 13.
    D. C. LESLIE and G. L. QUARINI, J. Fluid Mech. 91 (1979), 65.zbMATHCrossRefADSGoogle Scholar
  14. 14.
    B. FORNBERG, J. Comput. Phys. 25 (1977), 1.zbMATHCrossRefADSGoogle Scholar
  15. 15.
    N. N. MANSOUR, P. MOIN, W. C. REYNOLDS, and J. H. FERZIGER, “Improved Methods for Large Eddy Simulations of Turbulence,” in Turbulent Shear Flows I, F. Durst et al., eds., Springer-Verlag, Berlin, 1979, pp. 386–401.Google Scholar
  16. 16.
    R. A. CLARK, J. H. FERZIGER and W. C. REYNOLDS, J. Fluid Mech. 91 (1979), 92.CrossRefGoogle Scholar
  17. 17.
    O. J. McMILLAN and J. H. FERZIGER, “Direct Testing of Subgrid Scale Models,” AIAA Paper 79-072, New Orleans, La., 1979.Google Scholar
  18. 18.
    J. BARDINA, J. H. FERZIGER and W. C. REYNOLDS, “Improved Subgrid-Scale Models for Large-Eddy Simulation," AIAA Paper 80-1357, Snowmass, Colo., 1980.Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Leonard
    • 1
  1. 1.Ames Research Center, NASA Moffett FieldCaliforniaUSA

Personalised recommendations