Coherent structures in turbulent combustion

  • N. Peters
  • F. A. Williams
Session IV - Applications
Part of the Lecture Notes in Physics book series (LNP, volume 136)


Existing data on the interaction of coherent structures with combustion are reviewed. The combustion characteristics are quantified using the concept of stretched laminar flamelets in a turbulent flame. The difference between premixed and diffusion flamelets is established using results that have been obtained by activation-energy asymptotics. The effect that coherent structures may have on flame stability is discussed in terms of the quenching conditions of laminar flamelets and their statistics. Numerical methods that incorporate the essential features of coherent structures such that they could predict the effect of combustion on the structures are presented. Combustion-driven instability phenomena are described. Experimental data indicate that the probability density functions of conserved scalars are strongly changed by combustion. It is concluded the coherent structures may be more important in combustion systems than in other practical flow systems.


Shear Layer Coherent Structure Mixture Fraction Diffusion Flame Premix Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown, G.L., Roshko, A., J. Fluid Mech. 64, 775–816 (1974)CrossRefADSGoogle Scholar
  2. 2.
    Brown, G.L., Rebollo, M.R., AIAA J. 10, 649–652 (1972)CrossRefADSGoogle Scholar
  3. 3.
    Roshko, A., AIAA J. 14, 1349–1357 (1976)CrossRefADSGoogle Scholar
  4. 4.
    Marble, F.E., Broadwell, J.E., The Coherent Flame Model for Turbulent Chemical Reactions, Project SQUID Technical Report, TRW-9-PU (1977)Google Scholar
  5. 5.
    Spalding, D.B., 17th Symposium (Int.) on Combustion, p.431–440, The Combustion Institute, Pittsburgh 1979Google Scholar
  6. 6.
    Bush, W.B., Fendell, F.E., Combust. Sci. Techn. 1, 421–428 (1970)CrossRefGoogle Scholar
  7. 7.
    Fendell, F.E., J. Fluid Mech. 56, 81–95. (1972)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Liñán, A., Acta Astronautica 1, 1007–1039 (1974)CrossRefGoogle Scholar
  9. 9.
    Sivashinsky, G.I., Combust. Sci. Techn. 15, 137–145 (1977)CrossRefGoogle Scholar
  10. 10.
    Sivashinsky, G.I., Acta Astronautica 3, 889–918 (1976)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Clarke, J.F., J. Fluid Mech. 94, 195–208 (1979)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Joulin, G., Clavin, P., Combust. Flame 35, 139–153 (1979)CrossRefGoogle Scholar
  13. 13.
    Clavin, P., Williams, F.A., J. Fluid Mech. 90, 589–604 (1979)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Williams, F.A., A Review of Some Theoretical Considerations of Turbulent Flame Structure, AGARD CP 164, III–1–25 (1975)Google Scholar
  15. 15.
    Law, C.K., Law, H.K., J. Fluid Mech. 92, 97–108 (1979)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Peters, N., Int. J. Heat Mass Transf. 22, 691–703 (1979)zbMATHCrossRefGoogle Scholar
  17. 17.
    Mitani, T., Asymptotic Theory for Extinction of Curved Flames with Heat Loss, Combustion, Science and Technology, 1980 to appearGoogle Scholar
  18. 18.
    Buckmaster, J., Combustion Flame 26, 151–162 (1976)CrossRefGoogle Scholar
  19. 19.
    Kapila, A.K., Ludford, G.S.S., Combustion Flame 29, 167–176 (1977)CrossRefGoogle Scholar
  20. 20.
    Chorin, A.J., J. Fluid Mech. 57, 785–796 (1973)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Ashurst, W.T., Proc. of the 1st Symposium on Turbulent Shear Flows, p.402–413, Springer-Verlag, Berlin 1979Google Scholar
  22. 22.
    Ashurst, W.T., Vortex Simulation of a Model Turbulent Combustor, Proc. of the 7th (Int.) Coll. on Gasdynamics of Explosions and Reactive Systems, Göttingen 1979Google Scholar
  23. 23.
    Ghoniem, A.F., Chorin, A.J., Oppenheim, A.K., Numerical Modeling of Turbulent Combustion in Premixed Gases (1980) unpublishedGoogle Scholar
  24. 24.
    Thies, H.-J., Peters, N., Die Berechnung turbulenter Diffusionsflammen mit einem netzfreien numerischen Verfahren, DFG-Schlußbericht, Pe 241/1 (1980), unpublishedGoogle Scholar
  25. 25.
    Ganji, A.R., Sawyer, R.E., An Experimental Study of the Flow Field and Poolutant Formation in a Two-Dimensional Premixed Turbulent Flame, AIAA Paper No. 79-0017 (1979), also NASA Contractor Report 3230 (1980)Google Scholar
  26. 26.
    Altgeld, H., Laser-Doppler Messungen in einer turbulenten Wasserstoff-Luft-Diffusionsflamme, Dissertation am Institut für Technische Thermodynamik, Aachen 1979Google Scholar
  27. 27.
    Pitz, R.W., Daily, J.W., Second Symposium on Turbulent Shear Flows, Imperial College, London 1979Google Scholar
  28. 28.
    Karlovitz, A.G., Denninston, D.W., Knapschaefer, D.H., Wells, F.E., 4th Symposium on Combustion, p.613–620, Williams and Wilkins, Baltimore 1963Google Scholar
  29. 29.
    Yule, A.J., Chigier, N.A., Thompson, D., Coherent Structures in Combustion, Symposium on Turbulent Shear Flows, Penn State University, 1977Google Scholar
  30. 30.
    Yule, A.J., J. Fluid Mech. 89, 413–432 (1978)CrossRefADSGoogle Scholar
  31. 31.
    Chigier, N.A., Yule, A.J., The Physical Structure of Turbulent Flames, AIAA Paper 79-o217, 17th Aerospace Science Meeting, New Orleans 1979Google Scholar
  32. 32.
    Yule, A.J., Chigier, N.A., Ralph, S., Boulderstone, R., Ventura, J., Combustion-Transition Interaction in a Jet Flame, AIAA Paper 80-0077, 18th Aerospace Science Meeting, Pasadena, Ca. 1980Google Scholar
  33. 33.
    Grant, A.J., Jones, J.M., Combustion and Flame 25, 153–160 (1975)CrossRefGoogle Scholar
  34. 34.
    Chamberlin, D.S., Rose, A., 1st Symposium on Combustion, Ind. Eng. Chem. 20, 1013–1016 (1928)Google Scholar
  35. 35.
    Ballantyne, A., Bray, K.N.C., 16th Symposium (Int.) on Combustion, p.777–787, The Combustion Institute, Pittsburgh 1977Google Scholar
  36. 36.
    Markstein, G.H., Non-Steady Flame Propagation, Perganon Press, Oxford 1964Google Scholar
  37. 37.
    Bilger, R.W., Prog. Energy Combust. Sci. 1, 87–109 (1976)CrossRefGoogle Scholar
  38. 38.
    Williams, F.A., Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In: Turbulent mixing in non-reactive and reactive flow, p.189–208, Murthy, S.N.B. ed., Plenum Press (1975)Google Scholar
  39. 39.
    Peters, N., Local Quenching due to Flame Stretch and Non-Premixed Turbulent Combustion, Paper WSS 80-4, Western States Section of the Combustion Institute, Irvine, Ca. 1980Google Scholar
  40. 40.
    Papoulis, A., Probability, Random Variables and Stochastic Processes, p.176, Mc Graw-Hill, New York 1965zbMATHGoogle Scholar
  41. 41.
    Konrad, J.H., An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Application to Diffusion Limited Chemical Reactions, Ph. D. Thesis, California Institute of Technology, Pasadena, Ca. 1976, also Project SQUID Technical Report CIT-8-PUGoogle Scholar
  42. 42.
    Batt, R.G., J. Fluid Mech. 82, 53–95 (1977)CrossRefADSGoogle Scholar
  43. 43.
    Kennedy, M., Kent, J.H., 17th Symposium (Int.) on Combustion, p.279–287, The Combustion Institute, Pittsburgh 1979Google Scholar
  44. 44.
    Lockwood, F.C., Moneib, H.A., Combust. Sci. Techn. 22, 63–81 (1980)CrossRefADSGoogle Scholar
  45. 45.
    Janicka, J., Peters, N., Combust. Sci. Techn. 22, 93–96 (1980)CrossRefGoogle Scholar
  46. 46.
    Kent, J.H., Bilger, R.W., 14th Symposium (Int.) on Combustion, p.615–625, The Combustion Institute 1973Google Scholar
  47. 47.
    Peters, N., Donnerhack, S., Structure and Similarity of Nitric Oxide Production in Turbulent Diffusion Flames, 18th Symposium (Int.) on Combustion, to appearGoogle Scholar
  48. 48.
    Kolmogoroff, A.N., J. Fluid Mech. 13, 82–85 (1962)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Gibson, C.H., Masiello, P.J., Statistical Models and Turbulence, Lecture Notes in Physics 12, 427, Springer Verlag 1972ADSCrossRefGoogle Scholar
  50. 50.
    Parker, S.F., Sirignano, N.A., Comparisons amoungst various theories for turbulent, reacting planar mixing layers, Proc. of the 7th Int. Coll. on Gasdynamics of Explosions and Reactive Systems, Göttingen 1979Google Scholar
  51. 51.
    Winnant, C.D., Browand, F.K., J. Fluid Mech. 63, 237–255 (1974)CrossRefADSGoogle Scholar
  52. 52.
    Chorin, A.J., Flame Advection and Propagation Algorithms, J. Computational Phys. 34, 1980 to appearGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • N. Peters
    • 1
  • F. A. Williams
    • 2
  1. 1.Institut für Allgemeine Mechanik RWTHAachenWest-Germany
  2. 2.Department of Applied Mechanics and Engineering SciencesUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations