Brueckner theory and the heavy ion optical potential

  • Amand Faessler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 138)


Starting from the Brueckner theory a method for the calculation of the real and imaginary parts of the heavy ion potential is developed. The heavy ion potential is calculated solving the Bethe-Goldstone equation for two colliding nuclear matters with different densities. The transition from infinite nuclear matter to the collision of finite nuclei is obtained by using improvements of the local density approximation or of the double folding method. The Feshbach definition of the optical potential is used to justify this procedure. It should be reliable if the two-particle two-hole excitation energy is small compared to the kinetic energy of the heavy ion projectile and if the hole line expansion of the Brueckner theory can be used. Real and imaginary parts of the heavy ion optical potential calculated in this way depend very strongly on the center-of-mass energy. They agree favourably with phenomenological fits of such potentials. The imaginary part shows consistently a slightly too small radius. This is explained by the contributions of the surface vibrational states which can not be taken into account in an approach based on nuclear matter. Calculated cross sections for different heavy ions and different bombarding energies show a surprisingly good agreement with the experimental data.


Nuclear Matter Fermi Liquid Kinetic Energy Density Fermi Sphere Optical Model Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1a.
    N. Vinh Mau, A. Bouyssy, Nucl. Phys. A257 (1976) 189Google Scholar
  2. 1b.
    N. Vinh Mau, Lecture Notes in Physics 89, Microscopic Optical Potentials, Edited by H.V. v. Geramb, Springer 1979, p. 40Google Scholar
  3. 2.
    C. Mahaux, Lecture Notes in Physics 89, Ed. H.V. v. Geramb, Springer 1979, p. 1Google Scholar
  4. 3.
    H.V. v. Geramb, F.A. Brieva, J.R. Rook, Lecture Notes in Physics 89, Ed. H.V. v. Geramb, Springer 1979, p. 104Google Scholar
  5. 4.
    C. Mahaux, Lectures in Granada 1980, published in this Lecture NotesGoogle Scholar
  6. 5.
    F. Osterfeld, private communicationsGoogle Scholar
  7. 6.
    R. Bass, Nuclear Reactions with Heavy Ions, Springer 1980Google Scholar
  8. 7.
    D.A. Saloner, C. Toepffer, Nucl. Phys. A283 (1976) 108Google Scholar
  9. 8.
    F. Beck, K.H. Müller, H.S. Köhler, Phys. Rev. Lett. 40 (1978) 837Google Scholar
  10. 9.
    K. Wildermuth, Y.C. Tang, A Unified Theory of Nuclei, Vieweg Verlag 1977Google Scholar
  11. 10.
    T. Fliessbach, Z. Phys. 238 (1970) 329; 242 (1971) 287; 247 (1971) 117Google Scholar
  12. 11.
    H. Feshbach, Annals of Physics, 5 (1962) 287Google Scholar
  13. 12.
    A. Faessler, S.B. Khadkikar, L. Rikus, R. Sartor, in progressGoogle Scholar
  14. 13.
    P.J. Siemens, Nucl. Phys. A141 (1970) 225Google Scholar
  15. 14.
    A. Faessler, T. Izumoto, S. Krewald, R. Sartor, to be published in Nucl. Phys.Google Scholar
  16. 15.
    T. Izumoto, S. Krewald, A. Faessler, Nucl. Phys. A341 (1980) 319Google Scholar
  17. 16.
    R.V. Reid, Ann. of Phys. 50 (1968) 411Google Scholar
  18. 17.
    M.I. Haftel, F. Tabakin, Nucl. Phys. A158 (1970) 1Google Scholar
  19. 18a.
    D.M. Brink, F. Stancu, Nucl. Phys. A243 (1975) 175Google Scholar
  20. 18b.
    F. Stancu, D.M. Brink, Nucl. Phys. A270 (1976) 236Google Scholar
  21. 19.
    B. Fernandez, C. Gaarde, J.S. Larsson, S. Pontoppidan, F. Videbaek, Nucl. Phys. A306 (1978) 259Google Scholar
  22. 20.
    T. Izumoto, S. Krewald, A. Faessler, to be published in Nuclear PhysicsGoogle Scholar
  23. 21.
    A. Faessler, T. Izumoto, S. Krewald, R. Sartor, to be publishedGoogle Scholar
  24. 22.
    P.J. Siemens, Nucl. Phys. A141 (1970) 225Google Scholar
  25. 23.
    R.H. Siemssen et al., Phys. Rev. Lett. 19 (1967) 369Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Amand Faessler
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenWest-Germany

Personalised recommendations