The incorporation of particle collisions in the time-dependent hartree-fock approximation

  • Cheuk-Yin Wong
III. Collisions Terms
Part of the Lecture Notes in Physics book series (LNP, volume 171)


In the time-dependent Hartree-Fock (TDHF) approximation, particles interact only through the mean field, and the collisions between particles are not included. Previously, we formulated the extended time-dependent Hartree-Fock (ETDHF) approximation to include particle collisions in terms of a temporal variation of the occupation probability nγ for the single-particle states. In the simplest approximation, the single-particle potential is modified only through the particle density which depends on nγ. We wish to refine the extended TDHF approximation by studying how particle collisions affect the single-particle potential. We find that it acquires two second-order contributions which are state-dependent and are the generalization of the “core polarization” and “correlation” contributions one encounters in the study of the nucleon-nucleus optical potentials. In consequence, concepts such as energy-dependent single-particle potentials and effective masses may be properly introduced in the extended TDHF approximation. We also wish to review the conservation of energy in the ETDHF approximation. We find that the total energy should include a second-order contribution due to correlations arising from particle collisions. The proper choice of single-particle basis states in the extended TDHF approximation is also discussed.


Occupation Number Particle Collision Mass Operator Approximate Representation Nondiagonal Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Bonche, S. Koonin, and J. Negele, Phys. Rev. C 13, 1226 (1976); for a review of TDHF, see J. Negele (to be published in Reviews of Modern Physics), and K. T. R. Davies, K. R. S. Devi, S. E. Koonin, and M. Strayer, in Heavy Ion Sciences, Vols. I and II-Nuclear Science (ed. by D. A. Bromley), Plenum Press (in press).Google Scholar
  2. 2.
    C. Y. Wong and H. H. K. Tang, Phys. Rev. Lett. 40, 1070 (1978).Google Scholar
  3. 3.
    C. Y. Wong and H. H. K. Tang, Phys. Rev. C 20, 1419 (1979).Google Scholar
  4. 4.
    C. M. Shakin and M. S. Weiss, UCRL Report No. 08500 (unpublished).Google Scholar
  5. 5.
    H. Orland and R. Schaeffer, Z. fuer Phys. A290, 191 (1978).Google Scholar
  6. 6.
    D. Glas and U. Mosel, Nucl. Phys. A264, 2681 (1976); G. Shütte, and L. Wilets, Nucl. Phys. A252, 21 (1975).Google Scholar
  7. 7.
    C. Y. Wong and C. Toepffer, Proceedings of the EPS Topical Conference on Large Amplitude Collective Nuclear Motions (Keszthely, Hungary, 10–16 June, 1979) edited by J. Nemetiand. Zimanyi, p. 400; C. Toepffer and C. Y. Wong, Phys. Rev. C 25, 1018 (1982).Google Scholar
  8. 8.
    G. Wolschin, Phys. Rev. Lett. 48, 1004 (1982).Google Scholar
  9. 9.
    P. Mädler and R. Reif, Nucl. Phys. A273, 27 (1982).Google Scholar
  10. 10.
    P. Grangé, H. A. Weidenmüller, and G. Wolschin, Ann. Phys. (N.Y.) 136, 190 (1981); G. Mantzouranis and H. C. Pauli, Z. fuer Phys. A281, 165 (1977); G. Mantzouranis and H. C. Pauli, Phys. Rev. C 22, 1550 (1980).Google Scholar
  11. 11.
    ZHUO Yi-zhong, ZHANG Jing-shang, WU Xi-zhen, and MA Zhong-yu, Phys. Energ. Fortis, Phys. Nucl. 4, 675 (1980), (English translation Chinese Physics 2, 166 (1982)); ZHUO Yi-zhong, MA Zhong-yu, FENG Ren-fa, and ZHANG Jing-shang, Kexue Tongbao 26, 596 (1981); S. Ayik, Z. fuer Phys. A298, 83 (1980); S. Ayik, Nucl. Phys. A370, 317 (1981).Google Scholar
  12. 12.
    R. Balian and M. Venéroni, Ann. Phys. (N.Y.) 135, 270 (1981).Google Scholar
  13. 13.
    H. S. Köhler, Nucl. Phys. A343, 315 (1980); H. S. Köhler, Nucl. Phys. A378, 181 (1982).Google Scholar
  14. 14.
    J. Richert, D. M. Brink, and H. A. Weidenmüller, Phys. Lett. 87B, 6 (1979); J. Richert, P. Grange, G. Wolschin, and H. A. Weidenmüller, Nucl. Phys. A356, 260 (1981).Google Scholar
  15. 15.
    C. Y. Wong and K. T. R. Davies, Phys. Lett. 96B, 258 (1980).Google Scholar
  16. 16.
    P. Danielewicz, Ph.D. Thesis, Warsaw University, 1981 (to be published); P. Danielewicz, Workshop on Nuclear Dynamics (Granlibakken, California, 1982) LBL-14138, p. 93Google Scholar
  17. 17.
    G. F. Bertsch and T. T. S. Kuo, Nucl. Phys. A112, 204 (1968).Google Scholar
  18. 18.
    J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Reports 25C, 85 (1976).Google Scholar
  19. 19.
    C. Mahaux and H. Ngô, Nucl. Phys. A378, 205 (1982); P. F. Bortignon, R. A. Broglia, C. H. Dasso, and FU De-Ji, Phys. Lett. 108B, 24 (1982).Google Scholar
  20. 20.
    G. Schlitte and L. Wilets, Phys. Rev. C 25, 673 (1982).Google Scholar
  21. 21.
    P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).Google Scholar
  22. 22.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1976).Google Scholar
  23. 23.
    C. Y. Wong and S. J. Wang (to be published).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Cheuk-Yin Wong
    • 1
  1. 1.Oak Ridge National Laboratory Oak RidgeU.S.A.

Personalised recommendations