Generalizations of gravitational theory based on group covariance

  • Leopold Halpern
Geometrical Aspect of Gauge Theory and Gravitation
Part of the Lecture Notes in Physics book series (LNP, volume 176)


World Line Fairy Tale Semisimple Group Group Manifold Yang Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature references

  1. 1.
    L.P. Eisenhart, “Continous Groups of Transformation”, Princeton (1933)Google Scholar
  2. 2.
    N. Steenrod, “The Topology of Fibre Bundles”, Princeton (1974)Google Scholar
  3. 3.
    K. Nomizu, “Lie Groups and Differential Geometry”, Mathemat. Soc. Japan 2 (1956)Google Scholar
  4. 4.
    Y. Choquet, C. De Witt, M. Dillard, “Analysis, Manifolds and Physics” North Holland (1982)Google Scholar
  5. 5.
    L. Halpern, “Gen. Relat & Gravitation”, Vol.8 No.8 p623 (1977)Google Scholar
  6. 6.
    L. Halpern, Int. J. Theor. Phys. Vol.18 No.11 p845 (1979)Google Scholar
  7. 7.
    L. Halpern, Int. J. Theor. Phys. Vol 20 No.4 p297 (1981)Google Scholar
  8. 8.
    L. Halpern, Int. J. Theor. Phys. to appear shortly (Proc. Meeting in Honour of the 80th birthday of P. A. M. Dirac)Google Scholar
  9. 9.
    L. Halpern, Proceedings Internat. Meeting on Differential Geometry and Physics Trieste July 1981Google Scholar
  10. 10.
    O. Veblen, “Projektive Relativitätstheorie”, Vieweg, Braunschweig 1932Google Scholar
  11. 11.
    P. Jordan, “Schwerkraft und Weltall” Vieweg, Braunschweig (1952)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Leopold Halpern
    • 1
    • 2
  1. 1.Research Institute for Fundamental PhysicsKyoto
  2. 2.Dept. of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations