On some new concepts in probability theory

  • R. Jagannathan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 184)


Quantum Mechanic Clifford Algebra Heisenberg Uncertainty Principle Position Interval Finite Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alladi Ramakrishnan, ‘A mathematical feature of evolutionary stochastic processes', Sonderdruck aus Methods of Operations Research 36, 239 (1980) (paper presented at the Oberwolfach Conference in November 1978)Google Scholar
  2. 2.
    Alladi Ramakrishnan, ‘Approach to stationarity in stochastic processes', Proc. Tamil Nadu Acad. Sciences, 2, 189 (1979)Google Scholar
  3. 3.
    Alladi Ramakrishnan, ‘A new concept in probability theory', J. Math. Anal. Appl. 83, 408 (1981)Google Scholar
  4. 4.
    Alladi Ramakrishnan, ‘Duality in stochastic processes', J. Math. Anal. Appl. 84, 483 (1981)Google Scholar
  5. 5.
    Alladi Ramakrishnan, ‘Inverse probability and evolutionary Markov stochastic processes', Proc. Indian Acad. Sciences A41, 145 (1955)Google Scholar
  6. 6.
    R. Jagannathan, T.S. Santhanam and R. Vasudevan, ‘Finite-dimensional Quantum Mechanics of a particle', International J. Theor. Phys. 20, 755 (1981)Google Scholar
  7. 7.
    R. Jagannathan and T.S. Santhanam, ‘Finite-dimensional quantum mechanics of a particle-II', International J. Theor. Phys. 21, 351 (1982)Google Scholar
  8. 8.
    R. Jagannathan, ‘Finite-dimensional quantum mechanics of a particle-III:Weylian quantum mechanics of confined quarks’ International J. Theor. Phys. 22, (1983) to appearGoogle Scholar
  9. 9.
    H. Weyl, Theory of Groups and Quantum Mechanics, Dover, New York (1932) Section 4.14Google Scholar
  10. 10.
    J. Schwinger, Quantum Kinematics and Dynamics, Benjamin, New York (1970) Sections 2.12 and 6.18Google Scholar
  11. 11.
    Alladi Ramakrishnan, L-Matrix Theory or Grammar of Dirac Matrices, Tata-Mc Graw Hill, New Delhi, (1972)Google Scholar
  12. 12.
    R. Jagannathan and N.R. Ranganathan, ‘Generalized Clifford groups-I and II’ Reports on Mathematical Physics, 5, 131 (1974), 7, 229 (1975)Google Scholar
  13. 13.
    S. Gudder and V. Naroditsky, ‘Finite-dimensional quantum mechanics', International J. Theor. Phys. 20, 619 (1981)Google Scholar
  14. 14.
    S.D. Drell, M. Weinstein and S. Yankielowicz, ‘Strong-coupling field theories II: Fermions and gauge fields on a lattice', Phys. Rev. D14, 1627 (1976)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Jagannathan
    • 1
  1. 1.The Institute of Mathematical SciencesMadrasIndia

Personalised recommendations