CVD material

  • Daniel Kaplan
Part of the Topics in Applied Physics book series (TAP, volume 55)


CVD a-Si has been given less attention than glow discharge a-Si. The reason is the large density of native dangling-bond defects which make it less suitable for electronic applications. This situation may be modified in the future by use of the post-hydrogenation technique and/or extension of the low temperature deposition methods, using higher silanes or HOMOCVD. In the long term, specific advantages of CVD (or LPCVD) systems for designing large production systems may become important. In the near term, it is not likely to be a strong competitor for those applications which require the lowest density of gap states, e.g., solar cells. By other criterion, however, the material appears to be superior, for instance, in the ability to obtain high conductivity n + or p + layers. It may find its niche in specific applications.

From a fundamental point of view it can be considered as a reference material, relatively independent of preparation details, and a good vehicle to investigate basic questions concerning a-Si. In this respect, the problem of the relationship between doping and defect formation appears to be central at the time of writing and deserves further investigations.

Another question is that of the microstructure. Perhaps the most striking observation for CVD material is the fact that hydrogen diffusion coefficients appear to be independent of hydrogen content and similar to those observed in glow discharge samples. This gives a strong presumption that the hydrogen microstructures, e.g., clustered and diluted regions, do not depend on whether the hydrogen is grown into the film as in glow discharge deposition or introduced a posteriori as in plasma post-hydrogenated CVD films. This is an incentive to pursue the idea that these microstructures are intrinsic to the amorphous network and a basic property of tetrahedral materials.


Electron Spin Resonance Chemical Vapor Deposition Glow Discharge Hydrogen Content Electron Spin Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 5.1
    M. Hirose: J. Physique 42, C4–705 (1981)Google Scholar
  2. 5.2
    J. Bloem, L. J. Giling: In Current Topics in Materials Science 1, (North-Holland, Amsterdam 1978) Chap. 4, p. 147Google Scholar
  3. 5.3
    M. Janai, R. Weil, K. H. Levin, B. Pratt, R. Kalish, G. Braunstein, M. Teicher: J. Appl. Phys. 52, 3622 (1981)CrossRefADSGoogle Scholar
  4. 5.4
    M. Janaï, S. Aftergood, R. B. Weil, B. Pratt: J. Electrochem. Soc. 128, 2661 (1981)CrossRefGoogle Scholar
  5. 5.5
    S. C. Gau, B. R. Weinberger, M. Akhtar, Z. Kiss, A. G. MacDiarmid: Appl. Phys. Lett. 39, 436 (1981)CrossRefADSGoogle Scholar
  6. 5.6
    B. A. Scott, R. M. Plecenik, E. E. Simonyi: Appl. Phys. Lett. 39, 73 (1981)CrossRefADSGoogle Scholar
  7. 5.7
    B. A. Scott, J. A. Reimer, R. M. Plecenik, E. E. Simonyi, W. Reuter: Appl. Phys. Lett. 40, 973 (1982)CrossRefADSGoogle Scholar
  8. 5.8
    P. A. Thomas, M. H. Brodsky, D. Kaplan, D. Lépine: Phys. Rev. B 18, 3059 (1978)CrossRefADSGoogle Scholar
  9. 5.9
    D. Kaplan, N. Sol, G. Velasco, P. A. Thomas: Appl. Phys. Lett. 35, 440 (1978)CrossRefADSGoogle Scholar
  10. 5.10
    N. Sol, D. Kaplan, D. Dieumegard, D. Dubreuil: J. Non-Cryst. Solids 35–36, 291 (1980)CrossRefGoogle Scholar
  11. 5.11
    M. Janaï, D. D. Allred, D. C. Booth, B. O. Seraphin: Solar Energy Mat. 1, 11 (1979)CrossRefADSGoogle Scholar
  12. 5.12
    J. Magariño, D. Kaplan, A. Friederich, A. Deneuville: Phil. Mag. B 45, 285 (1982)CrossRefGoogle Scholar
  13. 5.13
    J. H. Purnell, R. Walsh: Proc. R. Soc. A 293, 543 (1966)CrossRefADSGoogle Scholar
  14. 5.14
    M. L. Hitchman, J. Kane, A. E. Widmer: Thin Solid Films 59, 231 (1979)CrossRefADSGoogle Scholar
  15. 5.15
    W. A. Bryant: Thin Solid Films 60, 19 (1979)CrossRefADSGoogle Scholar
  16. 5.16
    B. A. Scott, R. M. Plecenik, E. E. Simonyi: J. Physique 42, C 4–635 (1981)Google Scholar
  17. 5.17
    K. J. Sladek: J. Electrochem. Soc. 118, 655 (1971)CrossRefGoogle Scholar
  18. 5.18
    J. F. Morhange: Private communicationGoogle Scholar
  19. 5.19
    G. Harbeke, A. E. Widmer, J. Stuke: J. Phys. Soc. Jpn. 49, Suppl. A, 1229 (1980)Google Scholar
  20. 5.20
    K. Zellama, P. Germain, S. Squelard, J. C. Bourgoin, P. A. Thomas: J. Appl. Phys. 50, 6995 (1979) and private communicationCrossRefADSGoogle Scholar
  21. 5.21
    D. C. Booth, D. D. Allred, B. O. Seraphin: Solar Energy Mat. 2, 107 (1979)CrossRefADSGoogle Scholar
  22. 5.22
    C. W. Magee: cited in [5.19]Google Scholar
  23. 5.23
    E. Bustarret, J. C. Bruyère, A. Deneuville, J. F. Currie, P. Depelsenaire, R. Groleau: Proc. of the CVD “81” Conf., ed. by J. M. Blocher, G. E. Vuillard, Electrochem. Soc. (1981) p. 347Google Scholar
  24. 5.24
    M. Olivier, A. Chevenas-Paule: Private communicationGoogle Scholar
  25. 5.25
    W. Paul: Solid State Commun. 34, 283 (1980)CrossRefADSGoogle Scholar
  26. 5.26
    D. Kaplan: Physica Scripta 24, 396 (1981)CrossRefADSGoogle Scholar
  27. 5.27
    S. Hasegawa, T. Kasajima, T. Shimizu: Solid State Commun. 29, 13 (1979)CrossRefADSGoogle Scholar
  28. 5.28
    H. Fritzsche: Solar Energy Mat. 3, 447 (1980)CrossRefADSGoogle Scholar
  29. 5.29
    K. Zellama, P. Germain, S. Squelard, B. Bourdon, J. Fontenille, R. Daneliou: Phys. Rev. B22, 6648 (1981) and private communicationADSGoogle Scholar
  30. 5.30
    D. E. Carlson, C. W. Magee: Appl. Phys. Lett. 33, 81 (1978)CrossRefADSGoogle Scholar
  31. 5.31
    T. Suzuki, M. Hirose, Y. Osaka: Japan J. Appl. Phys. 19, Suppl. 19-2, 91 (1979)Google Scholar
  32. 5.32a
    M. Janaï, B. Karlsson: Solar Energy Mat. 1, 387 (1979)CrossRefADSGoogle Scholar
  33. 5.32a
    A. Divrechy, B. Yous, J. M. Berger, J. P. Ferraton, J. Robin, A. Donnadieu: Thin Solid Films 78, 235 (1981)CrossRefADSGoogle Scholar
  34. 5.33
    C. C. Tsai, H. Fritzsche: Solar Energy Mat. 1, 29 (1979)CrossRefGoogle Scholar
  35. 5.34
    W. B. Jackson, N. M. Amer: J. Physique 42, C4–293 (1981)Google Scholar
  36. 5.35
    R. A. Street, B. K. Biegelsen: Solid State Commun. 33, 1159 (1980)CrossRefADSGoogle Scholar
  37. 5.36
    D. J. Wolford, B. A. Scott, J. A. Reimer, R. M. Plecenik, J. A. Bradley: Bull. Am. Phys. Soc. 27, 145 (1982)Google Scholar
  38. 5.37
    M. Taniguchi, M. Hirose, Y. Osaka: J. Cryst. Growth 45, 126 (1978)CrossRefADSGoogle Scholar
  39. 5.38
    T. Nakashita, M. Hirose, Y. Osaka: Jpn. J. Appl. Phys. 20, 471 (1981)CrossRefADSGoogle Scholar
  40. 5.39
    M. Hirose, M. Taniguchi, T. Nakashita, Y. Osaka, T. Suzuki, S. Hasegawa, T. Shimizu: J. Non-Cryst. Solids 35–36, 297 (1980)CrossRefGoogle Scholar
  41. 5.40
    H. Dersch, J. Stuke, J. Beichler: Phys. Stat. Sol. (b) 105, 265 (1981)CrossRefADSGoogle Scholar
  42. 5.41
    A. Friederich, D. Kaplan: J. Phys. Soc. Jpn. 49, Suppl. A, 1233 (1980)Google Scholar
  43. 5.42
    R. A. Street: Phys. Rev. Lett. 49, 1187 (1982)CrossRefADSGoogle Scholar
  44. 5.43
    N. Szydlo, J. Magariño, D. Kaplan: J. Appl. Phys. 53 (7), 5044 (1982)CrossRefADSGoogle Scholar
  45. 5.44
    D. A. Anderson, W. E. Spear: Phil. Mag. 36, 695 (1977)CrossRefADSGoogle Scholar
  46. 5.45
    B. Jackson, N. M. Amer: Phys. Rev. B 25, 5559 (1982)ADSGoogle Scholar
  47. 5.46
    K. Zellama, P. Germain, S. Squelard, J. Magariño, B. Bourdon: Submitted for publicationGoogle Scholar
  48. 5.47
    B. O. Seraphin: J. Vac. Sci. Tech. 16 (2), 193 (1979)CrossRefADSGoogle Scholar
  49. 5.48
    D. H. Auston, P. Lavallard, N. Sol, D. Kaplan: Appl. Phys. Lett. 36 (1), 66 (1980)CrossRefADSGoogle Scholar
  50. 5.49
    Y. Mishima, M. Hirose, Y. Osaka: Japan J. Appl. Phys. 20, 593 (1981)CrossRefADSGoogle Scholar
  51. 5.50
    N. Szydlo, E. Chartier, N. Proust, J. Magariño, D. Kaplan: Appl. Phys. Lett. 40 (11), 988 (1982)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Daniel Kaplan

There are no affiliations available

Personalised recommendations