Quark and gluon condensates in hadrons and in quark interactions and the role of the quark-antiquark pair in the structure of nuclei

  • J. M. Namysłowski
Chapter 1. General Quark-Theoretical Viewpoints in Nuclear Physics
Part of the Lecture Notes in Physics book series (LNP, volume 197)


Some methods of the perturbative and non-perturbative QCD are reviewed. The QCD sum rules are presented on the example of the p-meson; and the extension of the QCD sum rules from mesons to baryons, and to the meson-baryon coupling constant are given. There are proposed some modifications of the short distance interactions; and the role of the quark-antiquark pair in the structure of nuclei is discussed in some detail.

We introduce the perturbative and the non-perturbative QCD methods, and write the operator product expansion near the light cone. On the example of the p-meson we show the technique of Shifman-Vainstein-Zakharov, and the extension of the QCD sum rules from the meson to the baryon sector, and to the evaluation of the meson-baryon coupling constant. We use the numerical results of Ioffe~and Reinders, Rubinstein and Yazaki.

Using the basic idea of Shifman, Vainstein and Zakharov, we propose a suggestion how to enrich the short distance quark interactions by the explicit inclusion of the quark and gluon condensates. We also consider possible dynamical improvements of the standard QCD sum rules. For that we show the Brodsky-Lepage evolution equation method as a mean of coping with the QCD dynamics in the reduced degrees of freedom. We note a particular 3-quark irreducible force, and reviewing some work of Frankfurt and Strikman we show, how the mark-antiquark pair influences the structure of : nucleon, deuteron, and iron. This force is a “core” of the two-nucleon correlation in nuclei, and accounts for the cumulative effect in the semi-inclusive processes.


Operator Product Expansion Vacuum Polarization Valence Quark Gluon Condensate Physical Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.A.Shifman, A.I.Vainstein and V.I.Zakharov, Nucl.Phys.B147, 385; 448; 519 (1979)Google Scholar
  2. 2.
    L.J.Reinders, H.R.Rubinstein and S.Yazaki, Nucl.Phys.B 186, 109 (1981); B 196, 125 (1982);B 213, 109 (1983); Phys.Letters 94B, 203 (1980); 95B, 103 (1980); 97B, 257 (1980); 103B, 63 (1981); 104 B, 305 (1981); 1138, 411 (1982); 120B, 209(1983)Google Scholar
  3. 3.
    B.L.Ioffe, Nucl.Phys.B188, 317 (1981), Erratum B191, 591 (1981)Google Scholar
  4. 4.
    Y.Frishman, Ann. of Phys. 66, 373 (1971)Google Scholar
  5. 5.
    A.V. Smilga, Sov.J.Nucl.Phys.35,2711 (1982)Google Scholar
  6. 6.
    W.Zimmermann in Lectures on Elementary Particles and Quantum Field Theory, ed.S.Deser et al (MIT Press. Cambridge, Mass.1971)Google Scholar
  7. 7.
    V.A.Novikov, M.A.Shifman, A.I.Vainstein, and V.I.Zakharov, Nucl. Phys.B174, 378 (1980)Google Scholar
  8. 8.
    B.L.Ioffe — ITEP (Moscow) preprint 131/82 titled: “On the choice of quark currents in the QCD sum rules for baryon masses”. See also Y.Chung, H.G.Dosch, M.Kremer and D.Schall in Zeit. f. Physik C15, 367 (1982)Google Scholar
  9. 9.
    B.L.Ioffe, Nucl.Phys.B188, 317 (1981)Google Scholar
  10. 10.
    B.I.Ioffe, Erratum Nucl.Phys.B191, 591 (1981)Google Scholar
  11. 11.
    J.S.Bell and R.A.Bertlmann, Nucl.Phys.B177, 218 (1981); B187,285 (1981); B.Durand, J.B.Shitenton and L.Durand, Phys.Lett. 1248, 410 (1983)Google Scholar
  12. 12.
    M.B.Voloshin, Sov.J.Nucl.Phys.36,143 (1982); Nuclear Phys.B154, 365 (1979)Google Scholar
  13. 13.
    G.P.Lepage and S.J.Brodsky, Phys.Rev.D22, 2157 (1980)Google Scholar
  14. 14.
    S.J.Brodsky and G.P.Lepage (SLAG-PUB-2447) published in the 1979 Summer Institute on Particle Physics at SLAG, Stanford, California; Physics Scripts 23, 945 (1981); S.J.Brodsky, T.Huong and G.P.Lepage (SLAC-PUB-2868) published in the Proceedings of the KFK Summer School on Quarks and Nuclear Forces (1981), “Quarks and Nuclear Forces” ed.D.Fries and B.Zeitnitz, Spring field (1982)Google Scholar
  15. 15.
    G.P.Lepage, S.J.Brodsky, T.Hugng and P.B.Mackenzie, Banf Summer Institute on Particle Phys.Banff, Alberta, Canada, August 1981Google Scholar
  16. 16.
    E.A.Bartnik and O.M.Namysłowski —“3-quark interaction — the driving force in the inhomogeneous evolution equations”, Warsaw Univ.preprint IFT/14/83, submitted to Phys.Rev.D.Google Scholar
  17. 17.
    V.L.Chernyak and A.R.Zhitnitsky, Nucl.Phys.B201, 492 (1982)Google Scholar
  18. 17a.
    V.L.Chernyak, A.R.Zhitnitsky and I.R. Zhitnitsky, Nucl.Phys.B204, 477 (1982)Google Scholar
  19. 18.
    R.L.Jaffe and M.Soldate, Phys.Rev.D26, 49 (1982); M.Soldete, “Pion and nucleon twist-4 structure functions in the limit x → 1”, SLAC-PUB-2998 (October 1982) (T); J.Gunion, P.Nason and R.Blankenbecler, Phys.Letters 117B, 353 (1982)Google Scholar
  20. 19.
    R.K.Ellis, W.Furmański and R.Petronzio, Nucl.Phys.B207, 1, (1982) B212, 29 (1983)Google Scholar
  21. 20.
    L.L.Frankfurt and M.I.Strikman, Phys.Rep.76,215 (1981); Nucl. Phys.B148, 107 (1979).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. M. Namysłowski
    • 1
  1. 1.Institute of Theoretical PhysicsWarsaw UniversityWarsaw

Personalised recommendations