Deuteron NMR — a new tool for studying chain mobility and orientation in polymers

  • H. W. Spiess
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 66)


Pulsed deuteron NMR is described, which has recently been developed to become a powerful tool for studying molecular order and dynamics in solid polymers. In drawn fibres the complete orientational distribution function for the polymer chains can be determined from the analysis of deuteron NMR line shapes. By analyzing the line shapes of 2H absorption spectra and spectra obtained via solid echo and spin alignment, respectively, both type and timescale of rotational motions can be determined over an extraordinary wide range of characteristic frequencies, approximately 10 MHz to 1 Hz. In addition, motional heterogeneities can be detected and the resulting distribution of correlation times can directly be determined.

The techniques are illustrated by experimental examples, concentrating on polymer dynamics. The chain motion in the amorphous regions of linear polyethylene is compared with the chain mobility of atactic polystyrene in the vicinity of its glass transition. Localized motions in the glassy state and their relation to the mechanical properties of polymers are illustrated in polycarbonate, where the jump motion of the phenyl groups can be blocked by low molecular weight additives, which supress the mechanical relaxation. The methyl rotation in this polymer is considered in detail, serving as an illustration for the accurate determination of a distribution of correlation times. Chain order in the amorphous and the crystalline regions of a drawn sample of linear polyethylene is compared. Finally information obtained from 2H NMR about structure and dynamics in novel polymeric materials, i.e. liquid crystalline polymers and polymers model membranes, is reviewed.


Nuclear Magnetic Resonance Spectrum Correlation Time Line Shape Glassy Polymer Liquid Crystalline Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

5 References

  1. 1.
    Ward, I. M.: Structure and properties of oriented polymers, Applied Science Publishers, London, (1975)Google Scholar
  2. 2.
    “Developments in Oriented Polymers — 1”, edited by I. M. Ward, Appl. Sci. Publ., London (1982)Google Scholar
  3. 3.
    Ferry, J. D.: Viscoelastic Properties of Polymers, 3rd Ed., J. Wiley, New York (1980)Google Scholar
  4. 4.
    McCrum, N. G., Read, B. E., Williams, G.: Anelastic and Dielectric Effects in Polymeric Solids, Wiley, New York (1967)Google Scholar
  5. 5.
    Ward, I. M.: Mechanical Properties of Solid Polymers, Wiley, New York (1971)Google Scholar
  6. 6.
    Nielsen, L. E.: “Mechanical Properties of Polymers and Composites” Marcel Decker, N. Y. (1974)Google Scholar
  7. 7.
    McBrierty, V. J., Douglass, D. C.: Physics Reports, 63, 61 (1980)Google Scholar
  8. 8.
    McBrierty, V. J., Douglass, D. C.: Macromol. Revs. 16, 295 (1981)Google Scholar
  9. 9.
    Jones, A. A., O'Gara, J. F., Inglefield, P. T., Bendler, J. T., Yee, A. F., Ngai, K. L.: Macromolecules, 16, 658 (1983)Google Scholar
  10. 10.
    Waugh, J. S., Huber, L. M., Haeberlen, U.: Phys. Rev. Letters 20, 180 (1968)Google Scholar
  11. 11.
    Pines, A., Gibby, M. G., Waugh, J. S.: J. Chem. Phys. 56, 1776 (1972)Google Scholar
  12. 12.
    Schaefer, J., Stejskal, E. O., Buchdahl, R.: Macromolecules 10, 384 (1977)Google Scholar
  13. 13.
    Haeberlen, U.: in “Advances in Magnetic Resonance”, edited by J. S. Waugh, Academic, New York, Suppl. 1 (1976)Google Scholar
  14. 14.
    Mehring, M.: “Principles of High Resolution NMR in Solids”, Springer-Verlag, Berlin-Heidelberg-New York, 1983Google Scholar
  15. 15.
    Spiess, H. W.: in Ref. 2, “ p. 47 Google Scholar
  16. 16.
    Spiess, H. W.: in “NMR, Basic Principles and Progress”, edited by P. Diehl, E. Fluck, R. Kosfeld, Springer-Verlag, Berlin-Heidelberg-New York (1978), Vol. 15, p. 55Google Scholar
  17. 17.
    Spiess, H. W., Colloid & Polymer Science, 261, 193 (1984)Google Scholar
  18. 18.
    Abragam, A.: The Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961)Google Scholar
  19. 19.
    Hentschel, R., Spiess, H. W.: J. Magn. Resonance 35, 157 (1979)Google Scholar
  20. 20.
    Spiess, H. W.: J. Chem. Phys. 72, 6755 (1980)Google Scholar
  21. 21.
    Levitt, M. H., Suter, D., Ernst, R. R.: J. Chem. Phys. 80, 3064 (1984)Google Scholar
  22. 22.
    Henrichs, P. M., Hewitt, J. M. Linder, M.: submitted to J. Magn. Resonance (1984)Google Scholar
  23. 23.
    Rosenke, K., Sillescu, H., Spiess, H. W.: Polymer 21, 757 (1980)Google Scholar
  24. 24.
    Hentschel, D., Sillescu, H., Spiess, H. W.: Macromolecules 14, 1605 (1981)Google Scholar
  25. 25.
    Hentschel, D., Sillescu, H., Spiess, H. W.: Polymer 25, 1078 (1984)Google Scholar
  26. 26.
    Jelinski, L. W., Dumais, J. J., Engel, A. K.: Macromolecules 16, 492 (1983)Google Scholar
  27. 27.
    Spiess, H. W., Sillescu, H.: J. Magn. Resonance 42, 381 (1980)Google Scholar
  28. 28.
    Jeener, J., Broekaert, P.: Phys. Rev. 157, 232 (1967)Google Scholar
  29. 29.
    Alla, M., Eckmann, R., Pines, A.: Chem. Phys. Letters 71, 148 (1980)Google Scholar
  30. 30.
    Schajor, W., Poslewski, N., Zimmermann, H., Haeberlen, U.: Chem. Phys. Letters 76, 409 (1980)Google Scholar
  31. 31.
    Suter, D., Ernst, R. R.: Phys. Rev. B 25, 6038 (1982)Google Scholar
  32. 32.
    Schmidt, C.: Diploma thesis, University of Mainz, 1984, Hellmann, G., K. Kuhn, C. Schmidt; H. W. Spiess to be publishedGoogle Scholar
  33. 33.
    Hentschel, R., Schlitter, J., Sillescu, H., Spiess, H. W.: J. Chem. Phys. 68, 56 (1978)Google Scholar
  34. 34.
    Hentschel, R., Sillescu, H., Spiess, H. W.: Polymer 22, 1516 (1981)Google Scholar
  35. 35.
    Spiess, H. W.: J. Mol. Struct. 111, 119 (1983)Google Scholar
  36. 36.
    Hentschel, D., Sillescu, H., Spiess, H. W., Voelkel, R., Willenberg, B.: Magn. Reson. Relat. Phenom., Proc. Congr. AMPERE, 19th, p. 381 (1976)Google Scholar
  37. 37.
    Barnes, R. G.: Advances in Nuclear Quadrupole Resonance, 1, 335 (1972)Google Scholar
  38. 38.
    Pechhold, W., Blasenbrey, S., Woerner, S.: Kolloid Z. u. Z. Polym. 189, 14 (1963)Google Scholar
  39. 39.
    Monnerie, L., Gény, F.: J. Chim., Phys. Physiochim. Biol. 66, 1961 (1969)Google Scholar
  40. 40.
    Schatzki, T. F.: Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 6, 646 (1965)Google Scholar
  41. 41.
    Helfand, E.: J. Chem. Phys. 54, 4651 (1971); Skolnick, J., E. Helfand, ibid. 72, 5489 (1980)Google Scholar
  42. 42.
    Helfand, E., Wassermann, Z. R., Weber, T. A.: J. Chem. Phys. 73, 526 (1980); Helfand, E., Z. R. Wassermann, T. A. Weber, J. Skolnick, J. H. Runnels, ibid. 75, 4441 (1981)Google Scholar
  43. 43.
    Anderson, P. W., Weiss, P. R.: Rev. Mod. Phys. 25, 269 (1953)Google Scholar
  44. 44.
    Hentschel, D., Sillescu, H., Spiess, H. W.: Makromol. Chem. 180, 241 (1979)Google Scholar
  45. 45.
    Pschorn, U., Spiess, H. W.: J. Magn. Resonance 39, 217 (1980)Google Scholar
  46. 46.
    Ernst, R. R., Anderson, W. A.: Rev. Sci. Instrum 37, 93 (1966)Google Scholar
  47. 47.
    Powles, J. G., Strange, J. H.: Proc. Phys. Soc. 82, 6 (1963)Google Scholar
  48. 48.
    Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I., Higgs, T. P.: Chem. Phys. Letters 42, 390 (1976)Google Scholar
  49. 49.
    Blinc, R., Rutar, V., Seliger, J., Slak, J., Smolej, V.: Chem. Phys. Letters 48, 576 (1977)Google Scholar
  50. 50.
    Bloom, M., Davis, J. H., Valic, M. I.: Can. J. Phys. 58, 1510 (1980)Google Scholar
  51. 51.
    Jeener, J.: Proc. AMPERE International Summer School II, Basko Polje, Yugoslavia, 1971Google Scholar
  52. 52.
    Aue, W. P., Bartholdi, E., Ernst, R. R.: J. Chem. Phys. 64, 2229 (1976)Google Scholar
  53. 53.
    Jeener, J., Meier, B. H., Bachmann, P., Ernst, R. R.: J. Chem. Phys. 71, 4546 (1979)Google Scholar
  54. 54.
    Bax, A.: Two-Dimensional Nuclear Magnetic Resonance in Liquids, D. Reidel Publ. Co., Dordrecht (1982)Google Scholar
  55. 55.
    Lausch, M., Spiess, H. W.: Chem. Phys. Letters 71, 182 (1980)Google Scholar
  56. 56.
    Lausch, M., Spies, H. W.: J. Magn. Resonance 54, 466 (1983)Google Scholar
  57. 57.
    Boyer, R. F.: in “Encyclopedia of Polymer Science and Technology”, edited by H. F. Mark and N. H. Bikales, J. Wiley, N. Y. 1977, Suppl. Vol. II, p. 745Google Scholar
  58. 58.
    Wallwitz, R.: Diploma Thesis, University of Mainz; Wallwitz, R., H. Sillescu and H. W. Spiess, to be publishedGoogle Scholar
  59. 59.
    Rössler, E., Sillescu, H., Spiess, H. W., Wallwitz, R.: Polymer 25, in press (1984)Google Scholar
  60. 60.
    Fuoss, R., Kirkwood, J.: J. Amer. Chem. Soc. 63, 185 (1941)Google Scholar
  61. 61.
    Davidson, D. W., Cole, R. H.: J. Chem. Phys. 19, 1484 (1951)Google Scholar
  62. 62.
    Connor, T. M.: Trans. Faraday Soc. 60, 1572 (1964)Google Scholar
  63. 63.
    Williams, G., Watts, D. C.: Trans. Faraday Soc. 66, 80 (1970)Google Scholar
  64. 64.
    Lindsey, C. P., Patterson, G. D.: J. Chem. Phys. 73, 3348 (1980)Google Scholar
  65. 65.
    Patterson, G. D.: Advances in Polymer Science 48, 124 (1983), Springer-Verlag, Berlin—Heidelberg—New YorkGoogle Scholar
  66. 66.
    Olf, H. G., Peterlin, A.: J. Polym. Sci., Part A-2 8, 771 (1970)Google Scholar
  67. 67.
    Ewen, B., Fischer, E. W., Piesczek, W., Strobl, G.: J. Chem. Phys. 61, 5265 (1975)Google Scholar
  68. 68.
    Ewen, B., Richter, D.: J. Chem. Phys. 69, 2954 (1978)Google Scholar
  69. 69.
    Mansfield, M., Boyd, R. H.: J. Polym. Sci, Polym. Phys. Ed. 16, 1227 (1978)Google Scholar
  70. 70.
    Opella, S. J., Waugh, J. S.: J. Chem. Phys. 66, 4919 (1977)Google Scholar
  71. 71.
    Meyer, H., Kilian, H. G.: Progress Colliod 166, (1978)Google Scholar
  72. 72.
    Bergmann, K.: J. Polym. Sci., Polym. Phys. Ed. 16, 1611 (1978)Google Scholar
  73. 73.
    Torchia, D. A., Szabo, A.: J. Magn. Resonance 49, 107 (1982)Google Scholar
  74. 74.
    Sillescu, H.: in: IUPAC Macromolecules, Edited by H. Benoit, P. Rempp, Pergamon Press, Oxford-New York (1982)Google Scholar
  75. 75.
    Rössler, E.: Ph. D. Thesis University of Mainz, 1984; Rössler, E., H. Sillescu, H. W. Spiess, R. Wallwitz, to be publishedGoogle Scholar
  76. 76.
    Locati, G., Tobolsky, A. V.: Advan. Mol. Relax. Proc. 1, 375 (1970)Google Scholar
  77. 77.
    Heijboer, J.: Intern. J. Polym. Mat. 6, 11 (1977)Google Scholar
  78. 78.
    Schaefer, J., Stejskal, E. O., Steger, T. R., Sefcik, M. D., McKay, R. A.: Macromolecules 13, 1121 (1980)Google Scholar
  79. 79.
    Schaefer, J., Sefcik, M. D., Stejskal, E. O., McKay, R. A., Dixon, W. T.: Proceedings IUPAC Macro Amherst, 1982, p. 25Google Scholar
  80. 80.
    Yee, A. F., Smith, S. A.: Macromolecules 14, 54 (1981)Google Scholar
  81. 81.
    Inglefield, P. T., Amici, R. M., O'Gara, J. F., Hung, C.-C., Jones, A. A.: Macromolecules 16, 1552 (1983)Google Scholar
  82. 82.
    Hellmann, G., Kuhn, W., Spiess, H. W., Wehrle, M.: to be publishedGoogle Scholar
  83. 83.
    Wendorff, J. H., Fischer, E. W.: Kolloid Z. Z. Polym. 251, 884 (1973)Google Scholar
  84. 84.
    Wendorff, J. H., Fischer, E. W.: Kolloid Z. Z. Polym. 251, 876 (1973)Google Scholar
  85. 85.
    Georgiou, A., Sillescu, H., Spiess, H. W.: unpublishedGoogle Scholar
  86. 86.
    Blumstein, A., “Liquid Crystalline Order in Polymers”, Academic Press, N. Y., 1978Google Scholar
  87. 87.
    “Polymeric Liquid Crystals” in “Materials Science and Technology Series”, edited by A. Cifferi, W. R. Krigbaum, R. B. Meyer, Academic Press, N. Y. 1982Google Scholar
  88. 88.
    Finkelmann, H., Ringsdorf, H., Wendorff, J. H.: Makromol. Chem. 179, 273 (1978)Google Scholar
  89. 89.
    Finkelmann, H., Happ, M., Portugall, M., Ringsdorf, H.: Makromol. Chem. 179, 2541 (1978)Google Scholar
  90. 90.
    Shibaev, V. P., Platé, N. A., Freidzon, Y. S.: J. Polym. Sci., Polym. Chem. Ed. 17, 1655 (1979)Google Scholar
  91. 91.
    Boeffel, C., Hisgen, B., Pschorn, U., Ringsdorf, H., Spiess, H. W.: Israel Journal of Chem. 23, 388 (1983)Google Scholar
  92. 92.
    Geib, H., Hisgen, B., Pschorn, U., Ringsdorf, H., Spiess, H. W.: J. Amer. Chem. Soc. 104, 917 (1982)Google Scholar
  93. 93.
    Flory, P. J., “Statistical Mechanics of Chain Molecules”, Interscience, N. Y. (1964)Google Scholar
  94. 94.
    De Gennes, P. G.: “The Physics of Liquid Crystals”, Oxford University Press, Oxford (1974)Google Scholar
  95. 95.
    Boeffel, C., Hisgen, B., Ringsdorf, H., Spiess, H. W.: to be publishedGoogle Scholar
  96. 96.
    Pschorn, U.: Ph. D. Thesis, University of Mainz, 1984; B. Hisgen, U. Pschorn, H. Ringsdorf, H. W. Spiess, to be publishedGoogle Scholar
  97. 97.
    Akimoto, A., Dorn, K., Gros, L., Ringsdorf, H., Schupp, H.: Angew. Chem. 93, 108 (1981)Google Scholar
  98. 98.
    Hub, H. H., Hupfer, B., Koch, H., Ringsdorf, H.: Angew. Chem. 92, 962 (1980)Google Scholar
  99. 99.
    Gros, L., Ringsdorf, H., Schupp, H.: Angew. Chem. 93, 311 (1981)Google Scholar
  100. 100.
    Dorn, K.: Ph. D. Thesis, University of Mainz, 1983Google Scholar
  101. 101.
    Ebelhäuser, R., Fahmy, T., Spiess, H. W.: Makromol. Chem. Rapid Comm 5, 333 (1984)Google Scholar
  102. 102.
    Chapman, D., Williams, R. M., Ladbrooke, B. D.: Chem. Phys. Lipids 1, 445 (1967)Google Scholar
  103. 103.
    Ebelhäuser, R., Spiess, H. W.: Makromol. Chem. Rapid Comm 5, 403 (1984)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. W. Spiess
    • 1
  1. 1.Lehrstuhl Makromolekulare Chemie IIUniversität BayreuthBayreuthGermany

Personalised recommendations