Applications of L-systems to computer imagery

  • Przemyslaw Prusinkiewicz
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)


A method for object modeling is presented and illustrated with examples. It extends to three dimensions a previously described technique for generating two-dimensional pictures using L-systems [Prusinkiewicz 1986]. The objects are modeled in two steps:
  • A string of symbols μ is generated using an L-system,

  • μ is interpreted graphically as a sequence of commands controlling a turtle which maneuvers in three dimensions. The turtle can draw lines of various widths and colors, and trace boundaries of filled polygons.

Examples of synthesized objects are given and the construction of the corresponding L-systems is explained. Attention is focused on the modeling of plants. Stochastic L-systems are introduced to model various specimens of the same species. The turtle interpretation is extended to allow for incorporating predefined curved surfaces in the model. In spite of the apparent complexity of the resulting images, all discussed objects are generated by very concise L-systems.

Key words

L-systems turtle geometry fractals plants 3D object modeling computer imagery database amplification 


  1. Abelson, H., and diSessa, A. A. [1982]: Turtle geometry. M.I.T. Press, Cambridge and London.Google Scholar
  2. Aono, M, and Kunii, T. L. [1984]: Botanical tree image generation. IEEE Computer Graphics and Applications 4, Nr. 5, pp. 10–34.Google Scholar
  3. Bloomenthal, J. [1985]: Modeling the Mighty Maple. Computer Graphics 19, Nr. 3, pp. 305–311.Google Scholar
  4. Eichhorst, P., and Savitch, W.J. [1980]: Growth functions of stochastic Lindenmayer systems. Information and Control 45, pp. 217–228.CrossRefGoogle Scholar
  5. Eyrolles, G. [1986]: Synthèse d'images figuratives d'arbres par des méthodes combinatoires. Ph.D. Thesis, Université de Bordeaux I.Google Scholar
  6. Foley J.D., and Van Dam, A. [1982]: Fundamentals of interactive computer graphics. Addison-Wesley, Reading.Google Scholar
  7. Freeman H. [1961]: On encoding arbitrary geometric configurations. IRE Trans. Electron. Comput. 10, pp. 260–268.Google Scholar
  8. Frijters, D., and Lindenmayer, A. [1974]: A model for the growth and flowering of Aster novaeangliae on the basis of table (1, 0) L-systems. In G. Rozenberg and A. Salomaa (Eds.): L Systems, Lecture Notes in Computer Science 15, Springer-Verlag, Berlin-Heidelberg-New York, pp. 24–52.Google Scholar
  9. Frijters, D., and Lindenmayer, A. [1976]: Developmental descriptions of branching patterns with paracladial relationships. In A. Lindenmayer and G. Rozenberg (Eds.): Automata, languages, development, North-Holland, Amsterdam-New York-Oxford, pp. 57–73.Google Scholar
  10. Frijters, D. [1978a]: Principles of simulation of inflorescence development. Annals of Botany 42, pp. 549–560.Google Scholar
  11. Frijters, D. [1978b]: Mechanisms of developmental integration of Aster novae-angliae L. and Hieracium murorum L. Annals of Botany 42, pp. 561–575.Google Scholar
  12. Herman, G. T., and Rozenberg, G. [1975]: Developmental systems and languages. North-Holland, Amsterdam and Oxford.Google Scholar
  13. Hogeweg, P., and Hesper, B. [1974]: A model study on biomorphological description. Pattern Recognition 6, pp. 165–179.Google Scholar
  14. Kawagushi, Y. [1982]: A morphological study of the form of nature. Computer Graphics 16, Nr. 3, pp. 223–232.Google Scholar
  15. Lindenmayer, A. [1968]: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, pp. 280–315.CrossRefPubMedGoogle Scholar
  16. Mandelbrot, B. B. [1982]: The fractal geometry of nature. W. H. Freeman, San Francisco.Google Scholar
  17. Menger, K. [1932]: Kurventheorie. Leipzig-Berlin.Google Scholar
  18. Oppenheimer, P. [1986]: Real time design and animation of fractal plants and trees. Computer Graphics 20, Nr. 4, pp. 55–64.Google Scholar
  19. Papert, S. [1980]: Mindstorms: children, computers, and powerful ideas. Basic Books, New York.Google Scholar
  20. Prusinkiewicz, P. [1986]: Graphical applications of L-systems. Proceedings of Graphics Interface '86 — Vision Interface '86, pp. 247–253.Google Scholar
  21. Reeves, W. T., and Blau, R. [1985]: Approximate and probabilistic algorithms for shading and rendering structured particle systems. Computer Graphics 19, Nr. 3, pp. 313–322.Google Scholar
  22. Rozenberg, G., and Salomaa, A. [1980]: The mathematical theory of L-systems. Academic Press, New York and London.Google Scholar
  23. Salomaa, A. [1973]: Formal languages. Academic Press, New York and London.Google Scholar
  24. Siromoney, R., and Subramanian, K. G. [1983]: Space-filling curves and infinite graphs. In H. Ehrig, M. Nagl and G. Rozenberg (Eds.): Graph grammars and their application to computer science. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.Google Scholar
  25. Smith, A. R. [1978]: About the cover: "Reconfigurable machines". Computer 11, Nr. 7, pp. 3–4.Google Scholar
  26. Smith, A. R. [1984]: Plants, fractals, and formal languages. Computer Graphics 18, Nr. 3, pp. 1–10.Google Scholar
  27. Stevens, P. S. [1974]: Patterns in nature. Little, Brown and Co., Boston.Google Scholar
  28. Szilard, A. L., and Quinton, R. E. [1979]: An interpretation for DOL systems by computer graphics. The Science Terrapin 4, pp. 8–13.Google Scholar
  29. Vitányi, P.M.B. [1986]: Development, growth and time. In G. Rozenberg and A. Salomaa [Eds.]: The book of L, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp. 431–444.Google Scholar
  30. Yokomori, T. [1980]: Stochastic characterizations of E0L languages. Information and Control 45, pp. 26–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Przemyslaw Prusinkiewicz
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations