Advances in array languages

  • Rani Siromoney
Part II Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 291)


The construction of the public key cryptosystems for picture languages opens up a new vista of applications for array grammars. We note that by extending the concept of codes to arrays, the unambiguity requirement may be removed provided we use array codes for encryption.


Graph Grammar Vertical Derivation Nonterminal Symbol Array Model Start Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aizawa, K. and A. Nakamura (1986), Direction-independent grammars with contexts, Information Sciences, 40, 1–20.CrossRefGoogle Scholar
  2. 2.
    Aizawa, K. and A. Nakamura (1986), Direction-independent application of productions on two-dimensional arrays, Information Processing Letters, 22, 295–299.CrossRefGoogle Scholar
  3. 3.
    Aparna, R. (1981), Studies on context-free graph grammars and ω-matrix languages, M.S. Dissertation, IIT, Madras.Google Scholar
  4. 4.
    Biswas, G. (1982), Inference of array grammars under noise and distortion, Ph.D. Thesis, Michigan State University, East Lansing.Google Scholar
  5. 5.
    Biswas, G. and R.C. Dubes (1984), Some experiments in two-dimensional grammatical inference, Pattern Recognition Letters, 2, 173–177.CrossRefGoogle Scholar
  6. 6.
    Claus, V., H. Ehrig and G. Rozenberg, Eds (1979), Graph grammars and their application to computer science and biology, Lecture Notes in Computer Science, 73, Springer-Verlag, Berlin.Google Scholar
  7. 7.
    Ehrig, H., M. Nagl and G. Rozenberg, Ed. (1983), Graph grammars and their application to computer science, Lecture Notes in Computer science, 153, Springer-Verlag, Berlin.Google Scholar
  8. 8.
    Harrison, M.A. (1979), ‘Introduction to Formal Languages', Addison Wesley, Reading, Mass, U.S.A.Google Scholar
  9. 9.
    Krithivasan, K. (1977), Variations of the matrix models, Int. J. Comp. Math. 6A, 171–190.Google Scholar
  10. 10.
    Rosenfeld, A., Picture languages, Academic Press, New York, 1979.Google Scholar
  11. 11.
    Rozenberg, G. and Salomaa, A. (1982), ‘The Mathematical Theory of L-Systems', Academic Press, New York.Google Scholar
  12. 12.
    Siromoney, G., R. Siromoney and K. Krithivasan (1972), Abstract families of matrices and picture languages, Computer Graphics and Image Processing 1, 284–307.Google Scholar
  13. 13.
    Siromoney, G., R. Siromoney and K. Krithivasan (1973), Picture languages with array rewriting rules, Inform. Cont. 22, 447–470.CrossRefGoogle Scholar
  14. 14.
    Siromoney, G., R. Siromoney and K. Krithivasan (1974), Array grammars and kolam, Computer Graphics and Image Processing 18, 202–211.Google Scholar
  15. 15.
    Siromoney, R. (1985), Array languages and Lindenmayer systems — a survey, in ‘The Book of L’ eds. G. Rozenberg and A. Salomaa, Springer-Verlag, Berlin.Google Scholar
  16. 16.
    Siromoney, R., and G. Siromoney (1977), Extended controlled table L-arrays, Inform. Contr. 35, 119–138.Google Scholar
  17. 17.
    Siromoney, R. and K.G. Subramanian (1981), Selective substitution array grammars, Inform. Sciences, 25, 73–83.Google Scholar
  18. 18.
    Siromoney, R. and K.G. Subramanian (1983), Generative grammar for the ‘Abbey Floor', Bull. EATCS — 20, 160–161.Google Scholar
  19. 19.
    Siromoney, R. and K.G. Subramanian (1985), Square-free and cubefree arrays, TR-Math 15/85, Madras Christian College, Tambaram.Google Scholar
  20. 20.
    Siromoney, R. and V.R. Dare and K.G. Subramanian (1983), Infinite arrays and infinite computation, Theoret. Comp. Sci., 24, 195–205.Google Scholar
  21. 21.
    Siromoney, R., G. Siromoney and K.G. Subramanian (1981), Extended table matrix grammars, TR 50, Dept. of Statistics, Madras Christian College (Presented at the first conference on Foundations of Software Technology and Theoretical Computer Science, Bangalore, India.)Google Scholar
  22. 22.
    Siromoney, R., K.G. Subramanian and Abisha Jeyanthi (1986), Cryptosystems for picture languages, Proc. NATO Advanced Workshop on Syntactic and Structural Pattern Recognition, Springer-Verlag, Berlin.Google Scholar
  23. 23.
    Siromoney, R., K.G. Subramanian and V.R. Dare (1984), Infinite arrays and controlled deterministic table OL-array systems, Theoret. Comp. Sci. 33, 3–11.Google Scholar
  24. 24.
    Siromoney, R., K.G. Subramanian and K. Rangarajan (1977), Parallel/sequential rectangular arrays with tables, Int. J. Comp. Math. 64, 143–158.Google Scholar
  25. 25.
    Subramanian, K.G. (1979), Studies on array languages, Ph.D. Dissertation, University of Madras, India.Google Scholar
  26. 26.
    Subramanian, K.G. and Siromoney, R. (1987), On array grammars and languages, Cybernetics and Systems, 18, 77–98.Google Scholar
  27. 27.
    Subramanian, K.G., R. Siromoney and G. Siromoney (1986), A note on an extension of matrix grammars generating two-dimensional languages (To appear in Information Sciences 35).Google Scholar
  28. 28.
    Wang, P.S.P. (1981), Parallel context-free array grammar normal forms, Comp. Graphics and Image Proc. 15, 296–300.Google Scholar
  29. 29.
    Wang, P.S.P. (1986), An application of array grammars to clustering analysis for syntactic patterns, Pattern Recognition, 17, 441–451.Google Scholar
  30. 30.
    Wang, P.S.P., (1986), A grammatical inference algorithm for digitized array patterns, Proc. ICPR 86, 129–131.Google Scholar
  31. 31.
    Wang, P.S.P. and H.J. Lin (1986), A pumping lemma for two-dimensional array languages, ICPR 86, 126–128.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Rani Siromoney
    • 1
  1. 1.Department of MathematicsMadras Christian College TambaramMadras

Personalised recommendations