Algorithms and Complexity

Part of the GOR ■ Publications book series (GOR)


Feasible Solution Knapsack Problem Feasible Schedule Short Path Problem Simplex Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference Notes

  1. [2]
    Aarts, E.H.L., Lenstra, J.K. (1997): Local Search in Combinatorial Optimization, John Wiley.Google Scholar
  2. [3]
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993): Network Flows, Prentice Hall, Englewood Cliffs.Google Scholar
  3. [10]
    Bellman, R.E. (1958): Dynamic Programming, Princeton University Press.Google Scholar
  4. [11]
    Bland, R.G. (1977): New finite pivoting rules for the simplex method, Mathematics of Operations Research 2, 103–107.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [14]
    Błażewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G. (1983): Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics 5, 11–24.MathSciNetCrossRefGoogle Scholar
  6. [28]
    Brucker, P., Knust, S.: Complexity classification of scheduling problems, Scholar
  7. [34]
    Chvátal, V. (1983): Linear Programming, W.H. Freeman and Company, New York — San Francisco.Google Scholar
  8. [35]
    Cook, S.A. (1971): The complexity of theorem-proving procedures, Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, 151–158.Google Scholar
  9. [45]
    Dijkstra, E. (1959): A note on two problems in connexion with graphs, Numerische Mathematik 1, 269–271.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [55]
    Floyd, R.W. (1962): Algorithm 97: Shortest path, Communications of the Association for Computing Machinery 5, 345.Google Scholar
  11. [56]
    Ford, L.R., Fulkerson, D.R. (1956): Maximal flow through a network, Canadian Journal of Mathematics 8, 399–404.MathSciNetCrossRefGoogle Scholar
  12. [57]
    Garey, M., Johnson, D.S. (1979): Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York.Google Scholar
  13. [58]
    Gilmore, P.C., Gomory, R.E. (1961): A linear programming approach to the cutting-stock problem, Operations Research 9, 849–859.MathSciNetCrossRefGoogle Scholar
  14. [59]
    Glover, F. (1989): Tabu Search, Part I, ORSA Journal of Computing 1, 190–206.zbMATHMathSciNetGoogle Scholar
  15. [60]
    Glover, F. (1990): Tabu Search, Part II, ORSA Journal of Computing 2, 4–32.zbMATHGoogle Scholar
  16. [61]
    Glover, F., Laguna, M. (1997): Tabu Search, Kluwer, Dordrecht.Google Scholar
  17. [73]
    Holland, S. (1975): Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.Google Scholar
  18. [79]
    Khachian, L.G. (1979): A polynomial algorithm in linear programming, Soviet Math. Dokl. 20, 191–194.Google Scholar
  19. [80]
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983): Optimization by simulated annealing, Science 220, 671–680.ADSMathSciNetCrossRefGoogle Scholar
  20. [81]
    Klee, V., Minty, G.J. (1972): How good is the simplex algorithm? Inequalities III, Proc. 3rd Symp., Los Angeles 1969, 159–175.Google Scholar
  21. [82]
    Klein, M. (1967): A primal method for minimal cost flows with application to the assignment and transportation problems, Management Science 14, 205–220.zbMATHCrossRefGoogle Scholar
  22. [93]
    Korte, B., Vygen, J. (2002): Combinatorial optimization — Theory and algorithms, 2nd ed., Springer, Berlin.Google Scholar
  23. [96]
    Lawler, E.L. (1976): Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York.Google Scholar
  24. [118]
    Papadimitriou, C.H., Steiglitz, K. (1982): Combinatorial Optimization, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  25. [125]
    Pritsker, A., Watters, L., Wolfe, P. (1969): Multiproject scheduling with limited resources: A zero-one programming approach, Management Science 16, 93–107.CrossRefGoogle Scholar
  26. [130]
    Schrijver, A. (2003): Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations