Restricted Co-inertia Analysis

  • Pietro Amenta
  • Enrico Ciavolino
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


In this paper, an extension of the Co-inertia Analysis is proposed. This extension is based on a objective function which takes into account directly the external information, as linear restrictions about one set of variables, by rewriting the Co-inertia Analysis objective function according to the principle of Restricted Eigenvalue Problem (Rao (1973)).


Partial Little Square Canonical Correlation Analysis Statistical Unit External Information Management Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMENTA, P. (2005): Double Restricted Co-inertia Analysis. Submitted.Google Scholar
  2. AMENTA, P. and CIAVOLINO, E. (2005): Single Restricted Co-inertia-PLS Analysis. Submitted.Google Scholar
  3. AMENTA P. and D’AMBRA L. (1994): Analisi non Simmetrica delle Corrispondenze Multiple con Vincoli Lineari. Book of XXXVII Riunione S.I.S., Sanremo, Italy.Google Scholar
  4. AMENTA P. and D’AMBRA L. (1996): L’Analisi in Componenti Principali in rapporto ad un sottospazio di riferimento con informazioni esterne. Quaderni di Statistica del Dipartimento di Metodi Quantitativi e Teoria Economica, Università “G. D’Annunzio” di Pescara, n. 18/1996.Google Scholar
  5. AMENTA P. and D’AMBRA L. (2000): Constrained Principal Components Analysis with External Information. Rivista di Statistica Applicata, Vol. 12, n. 1.Google Scholar
  6. AMENTA P. and D’AMBRA L. (2000): Generalized Constrained Principal Component Analysis with external information. Book of XL Riunione S.I.S. Firenze, Italy.Google Scholar
  7. AMENTA, P., DURAND J.F and D’AMBRA L. (2005): The objective function of Restricted Partial Least Squares. Submitted.Google Scholar
  8. BÖCKENHOLT U. and BÖCKENHOLT I. (1990): Canonical analysis of contingency tables with linear constraints. Psychometrika, 55, pp. 633–639.Google Scholar
  9. CAILLIEZ, F. and PAGES, J.P. (1976): Introduction à l’analyse des données. Smash, Paris.Google Scholar
  10. CHESSEL, D. and MERCIER P. (1993): Couplage de triplets statistiques et liaisons especes-environement. In J.D. LEBRETON and B. ASSELAIN (Eds.) Biometrie et environment. Masson, Paris.Google Scholar
  11. HÖSKULDSSON, A. (2001): Casual and path modelling. Chemometrics and Intell. Lab. Systems, 58,2, pp. 287–311.Google Scholar
  12. HOTTELLING, H. (1936): Relations between two sets of variates. Biometrika, 28.Google Scholar
  13. JONGMAN, R.H., TER BRAAK, C.J.F. and VAN TONGEREN, O.F.R. (1987): Data analysis in community and landscape ecology. Pudoc, Wageningen.Google Scholar
  14. MARTENS, H., ANDERSSEN, E., FLATBERG, A., GIDSKEHAUG, L.H., HØY, M., WESTAD, F., THYBO, A. and MARTENS M. (2005): Regression of a data matrix on descriptors of both rows and of its columns via latent variables: L-PLSR. Computational Statistics and Data Analysis, 48, pp. 103–123.CrossRefMathSciNetGoogle Scholar
  15. PARASURAMAN A., ZEITHAML V., BERRYL. (1994) Reassessement of expectations as a comparison standard in measuring service quality: implications for future research. Journal of Marketing, 58,1.Google Scholar
  16. PRODON R. (1988): Dynamique des systémes avifaune-végétation aprés déprise rurale et incendies dans les pyénées méditerranéennes siliceuses. Thése, Université Paris VI. 333 pp..Google Scholar
  17. RAO, C.R. (1964): The use and interpretation of principal component analysis in applied research. Sankhya, A, 26, pp. 329–358.zbMATHGoogle Scholar
  18. RAO, C.R. (1973): Linear Statistical Inference and Its Application. Wiley, New York.Google Scholar
  19. TAKANE, Y. and SHIBAYAMA, T. (1991): Principal Component Analysis with External Information on both subjects and variables. Psychometrika, 56, pp. 97–120.MathSciNetGoogle Scholar
  20. TUCKER, L.R. (1958): An inter-battery method of factor analysis. Psycometrika, 23, n.2, pp. 111–136.zbMATHMathSciNetGoogle Scholar
  21. WOLD, H. (1966): Estimation of principal components and related models by iterative least squares. In P.R. KRISHNAIAH (Eds.) Multivariate Analysis. Academic Press, New York.Google Scholar

Copyright information

© Springer Berlin · Heidelberg 2006

Authors and Affiliations

  • Pietro Amenta
    • 1
  • Enrico Ciavolino
    • 2
  1. 1.Department of Analysis of Economic and Social SystemsUniversity of SannioBeneventoItaly
  2. 2.Research Centre on Software TechnologyUniversity of SannioBeneventoItaly

Personalised recommendations