Transition Path Sampling Methods

  • C. Dellago
  • P.G. Bolhuis
  • P.L. Geissler
Part of the Lecture Notes in Physics book series (LNP, volume 703)


Transition path sampling, based on a statistical mechanics in trajectory space, is a set of computational methods for the simulation of rare events in complex systems. In this chapter we give an overview of these techniques and describe their statistical mechanical basis as well as their application.


Path Sampling Reaction Coordinate Acceptance Probability Transition State Theory Transition Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-X. Zhou and R. Zwanzig (1991) A rate process with an entropy barrier. J. Chem. Phys., 94, pp. 6147–6152CrossRefADSGoogle Scholar
  2. 2.
    J. B. Anderson (1973) Statistical theories of chemical reactions: Distributions in the transition region. J. Chem. Phys., 58, pp. 4684–4692; C.H. Bennett (1977) Molecular Dynamics and Transition State Theory: the Simulation of Infrequent Events. In Algorithms for Chemical Computations, ed. R. E. Christoffersen, pp. 63–97; Washington, D.C.: Amer. Chem. Soc.; D. Chandler (1978) Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys., 68, pp. 2959–2970Google Scholar
  3. 3.
    L.R. Pratt (1986) A statistical method for identifying transition states in high dimensional problems. J. Chem. Phys., 85, pp. 5045–5048CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    C. Dellago, P.G. Bolhuis, F.S. Csajka, and D. Chandler (1998) Transition Path Sampling and the Calculation of Rate Constants. J. Chem. Phys., 108, pp. 1964–1977CrossRefADSGoogle Scholar
  5. 5.
    C. Dellago, P.G. Bolhuis, and D. Chandler (1998) Efficient Transition Path Sampling: Applications to Lennard-Jones cluster rearrangements. J. Chem. Phys., 108, pp. 9236–9245CrossRefADSGoogle Scholar
  6. 6.
    P.G. Bolhuis, C. Dellago, and D. Chandler (1998) Sampling ensembles of deterministic transition pathways. Faraday Discuss., 110, pp. 421–436CrossRefADSGoogle Scholar
  7. 7.
    W. E., W. Ren, and E. Vanden-Eijnden (2002) String method for the study of rare events. Phys. Rev. B, 66, 052301/1-4CrossRefADSGoogle Scholar
  8. 8.
    W. E., W. Ren, and E. Vanden-Eijnden (2005) Finite Temperature String Method for the Study of Rare Events. J. Phys. Chem. B, 109, pp. 6688-6693CrossRefGoogle Scholar
  9. 9.
    R. Elber, A. Ghosh, A. Cardenas, and H. Stern (2004) Bridging the gap between reaction pathways, long time dynamics and calculation of rates. Adv. Chem. Phys., 126, pp. 93–129CrossRefGoogle Scholar
  10. 10.
    D. Passerone, M. Ceccarelli, and M. Parrinello (2003) A concerted variational strategy for investigating rare events. J. Chem. Phys., 118, pp. 2025–2032CrossRefADSGoogle Scholar
  11. 11.
    P. G. Bolhuis, D. Chandler, C. Dellago, and P.L. Geissler (2002) Transition Path Sampling: Throwing Ropes over Mountain Passes in the Dark. Ann. Rev. Phys. Chem., 53, pp. 291–318CrossRefADSGoogle Scholar
  12. 12.
    C. Dellago, P.G. Bolhuis, and P.L. Geissler (2002) Transition Path Sampling. Adv. Chem. Phys., 123, pp. 1–78CrossRefGoogle Scholar
  13. 13.
    C. Dellago and D. Chandler (2002) Bridging the time scale gap with transition path sampling, in Molecular Simulation for the Next Decade, ed. by P. Nielaba, M. Mareschal, and G. Ciccotti, Springer, Berlin. pp. 321–333CrossRefGoogle Scholar
  14. 14.
    C. Dellago (2005) Transition Path Sampling, in Handbook of Materials Modeling, ed. by S. Yip, Springer, Berlin. pp. 1585–1596CrossRefGoogle Scholar
  15. 15.
    C. Dellago (2006) Transition Path Sampling and the Calculation of Free Energies, in Free energy calculations: Theory and applications in chemistry and biology, ed. by A. Pohorille and C. Chipot, Springer, Berlin, pp. 265–294Google Scholar
  16. 16.
    G.E. Crooks and D. Chandler (2001) Efficient transition path sampling for non equilibrium stochastic dynamics. Phys. Rev. E, E 64, 026109/1–4Google Scholar
  17. 17.
    R. Car and M. Parrinello (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 55, pp. 2471–2474CrossRefADSGoogle Scholar
  18. 18.
    S. Nose (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys, 81, pp. 511-519; W.G. Hoover (1985) Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A, 31, pp. 1695– 1697Google Scholar
  19. 19.
    D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran, and A.J.C. Ladd (1983) Nonequilibrium molecular dynamics via Gauss’s principle of least constraint. Phys. Rev. A, 28, pp. 1016–2021CrossRefADSGoogle Scholar
  20. 20.
    R. Zwanzig (2001) Nonequilibrium Statistical Mechanics, Oxford University Press, OxfordGoogle Scholar
  21. 21.
    M.P. Allen and D.J. Tildesley (1987) Computer Simulation of Liquids, Clarendon Press, OxfordzbMATHGoogle Scholar
  22. 22.
    S. Chandrasekhar (1943) Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys., 15, pp. 1–89zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    P.L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello (2001) Autoionization in liquid water. Science, 291, pp. 2121–2124CrossRefADSGoogle Scholar
  24. 24.
    D.P. Landau and K. Binder (2000) A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, CambridgezbMATHGoogle Scholar
  25. 25.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953) Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, pp. 1087–1092CrossRefADSGoogle Scholar
  26. 26.
    T.J.H. Vlugt, C. Dellago, and B. Smit (2000) diffusion of Isobutane in Silicalite studied by Transition Path Sampling. J. Chem. Phys., 113, p. 8791CrossRefADSGoogle Scholar
  27. 27.
    P.G. de Gennes (1971) Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys., 55, pp. 572–579CrossRefADSGoogle Scholar
  28. 28.
    R.B. Best and G. Hummer (2005) Reaction coordinates and rates from transition paths. Proc. Nat. Acad. Sci. USA, 102, pp. 6732–6737CrossRefADSGoogle Scholar
  29. 29.
    L. Onsager (1938) Initial Recombination of Ions. Phys. Rev., 54, pp. 554–557CrossRefADSGoogle Scholar
  30. 30.
    V. Pande, A.Y. Grosberg, T. Tanaka, and E.I. Shakhnovich (1998) On the transition coordinate for protein folding. J. Chem. Phys., 108, pp. 334–350CrossRefADSGoogle Scholar
  31. 31.
    S. Auer and D. Frenkel (2001) Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature, 409, pp. 1020–1023CrossRefADSGoogle Scholar
  32. 32.
    E.A. Carter, G. Ciccotti, J.T. Hynes, and R. Kapral (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett., 156, pp. 472–477CrossRefADSGoogle Scholar
  33. 33.
    D. Moroni, P.R. tenWolde, and P.G. Bolhuis (2005) Interplay between Structure and Size in a Critical Crystal Nucleus. Phys. Rev. Lett., 94, 235703/1–4Google Scholar
  34. 34.
    D. Chandler (1987) Introduction to Modern Statistical Mechanics, Oxford University Press, New YorkGoogle Scholar
  35. 35.
    G.M. Torrie and J.P. Valleau (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fiuid. Chem. Phys. Lett., 28, pp. 578–581CrossRefADSGoogle Scholar
  36. 36.
    C. Dellago, P.G. Bolhuis and D. Chandler (1999) On the calculation of rate constants in the transition path ensemble. J. Chem. Phys., 110, pp. 6617–6625CrossRefADSGoogle Scholar
  37. 37.
    T.S. van Erp, D. Moroni, and P.G. Bolhuis (2003) A novel path sampling method for the calculation of rate constants. J. Chem. Phys., 118, pp. 7762–7774CrossRefADSGoogle Scholar
  38. 38.
    T.S. van Erp and P.G. Bolhuis (2005) Elaborating transition interface sampling methods. J. Comp. Phys., 205, pp. 157–181zbMATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    D. Moroni, P.G. Bolhuis, and T.S. van Erp (2004) Rate constants for diffusive processes by partial path sampling. J. Chem. Phys., 120, pp. 4055–4065CrossRefADSGoogle Scholar
  40. 40.
    A.K. Faradjian and R. Elber (2004) Computing time scales from reaction coordinates by milestoning. J. Chem. Phys., 120, pp. 10880–10889CrossRefADSGoogle Scholar
  41. 41.
    R. J. Allen, P. B. Warren, and P. R. ten Wolde (2005) Sampling Rare Switching Events in Biochemical Networks. Phys. Rev. Lett., 94, 018104/1–4Google Scholar
  42. 42.
    P.W. Atkins (2001) Physical Chemistry, 7th edition, Oxford University Press, OxfordGoogle Scholar
  43. 43.
    C. Dellago and P.G. Bolhuis (2004) Activation energies from transition path sampling simulations. Mol. Sim., 30, pp. 795–799zbMATHCrossRefGoogle Scholar
  44. 44.
    H.B. Callen (1985) Thermodynamics and an Introduction to Thermostatistics, 2nd edition, John Wiley and Sons, New YorkzbMATHGoogle Scholar
  45. 45.
    C. Jarzynski (1997) Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett., 78, pp. 2690-2693CrossRefADSGoogle Scholar
  46. 46.
    G.E. Crooks (1998) Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems. J. Stat. Phys., 90, pp. 1481– 1487zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    F. Ritort (2003) Work fluctuations and transient violations of the second law: perspectives in theory and experiments. Sem. Poincare 2, pp. 193–226Google Scholar
  48. 48.
    G. Hummer (2001) Fast-growth thermodynamic integration: Error and efficiency analysis. J. Chem. Phys., 114, pp. 7330-7337CrossRefADSGoogle Scholar
  49. 49.
    H. Oberhofer, C. Dellago and P.L. Geissler (2005) Biased sampling of nonequilibrium trajectories: Can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B, 69, pp. 6902–6915CrossRefGoogle Scholar
  50. 50.
    R. Zwanzig (1954) High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. Phys., 22, pp. 1420–1426CrossRefADSGoogle Scholar
  51. 51.
    B. Widom (1963) Some Topics in the Theory of Fluids. J. Chem. Phys., 39, pp. 2808-2812CrossRefADSGoogle Scholar
  52. 52.
    S.X. Sun (2003) Equilibrium free energies from path sampling of nonequilibrium trajectories. J. Chem. Phys., 118, pp. 5769–5775CrossRefADSGoogle Scholar
  53. 53.
    F.M. Ytreberg and D.M. Zuckerman (2004) Single-ensemble nonequilibrium path-sampling estimates of free energy differences. J. Chem. Phys., 120, pp. 10876–10879CrossRefADSGoogle Scholar
  54. 54.
    M. Athènes (2004) A path-sampling scheme for computing thermodynamic properties of a many-body system in a generalized ensemble. Eur. Phys. J. B, 38, pp. 651–663CrossRefADSGoogle Scholar
  55. 55.
    D. Frenkel and B. Smit (2002) Understanding Molecular Simulation, Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. Dellago
    • 1
  • P.G. Bolhuis
    • 2
  • P.L. Geissler
    • 3
  1. 1.Faculty of PhysicsUniversity of ViennaWienAustria
  2. 2.van ’t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations