Advertisement

Linearized Path Integral Methods for Quantum Time Correlation Functions

  • D.F. Coker
  • S. Bonella
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

Abstract

We review recently developed approximate methods for computing quantum time correlation functions based on linearizing the phase of their path integral expressions in the difference between paths representing the forward and backward propagators. Our focus here will be on problems that can be partitioned into two subsystems: One that is best described by a few discrete quantum states such as the high frequency vibrations or electronic states of molecules, and the other subsystem, “the bath”, composed of the remaining degrees of freedom that will be described by a continuous representation. The general theory will first be developed and applied to model condensed phase problems. Approximations to the theory will be then made enabling applications to large scale realistic systems.

Keywords

Correlation Function Classical Trajectory Coupling Region Time Correlation Function Velocity Autocorrelation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Tully (1998) Mixed quantum classical dynamics: Mean field and surface hopping. In G. Ciccotti B. Berne, and D. Coker, editors, Classical and quantum dynamics in condensed phase simulations. World Scientific, Dordrecht, p. 489Google Scholar
  2. 2.
    N. Yu, C. J. Margulis, and D. F. Coker (2001) Influence of solvation environment on excited state avoided crossings and photo-dissociation dynamics. J. Phys. Chem. B 105, p. 6728CrossRefGoogle Scholar
  3. 3.
    C. J. Margulis and D. F. Coker (1999) Nonadiabatic molecular dynamics simulations of the photofragmentation and geminate recombination dynamics in size-selected I-2 (CO2)n cluster ions. J. Chem. Phys. 110, p. 5677CrossRefADSGoogle Scholar
  4. 4.
    V. S. Batista and D. F. Coker (1997) Nonadiabatic molecular dynamics simulations of the photofragmentation and geminate recombination dynamics of I- 2 in size selected Arn clusters. J. Chem. Phys. 106, p. 7102CrossRefADSGoogle Scholar
  5. 5.
    V. S. Batista and D. F. Coker (1997) Nonadiabatic molecular dynamics simulations of ultrafast pump-probe experiments on I2 in solid rare gases. J. Chem. Phys. 106, p. 6923CrossRefADSGoogle Scholar
  6. 6.
    V. S. Batista and D. F. Coker (1996) Nonadiabatic molecular dynamics simulation of photodissociation and geminate recombination of I2 in liquid xenon. J. Chem. Phys. 105, p. 4033CrossRefADSGoogle Scholar
  7. 7.
    P. J. Rossky (1998) Nonadiabatic quantum dynamics simulation using classical baths. In G. Ciccotti B. Berne, and D. Coker, editors, Classical and quantum dynamics in condensed phase simulations. World Scientific, Dordrecht, p. 515Google Scholar
  8. 8.
    P. V. Parandeker and J. C. Tully (2005) Mixed quantum-classical equilibrium. J. Chem. Phys. 122, p. 094102CrossRefADSGoogle Scholar
  9. 9.
    R. Kapral and G. Ciccotti (1999) Mixed quantum-classical dynamics. J. Chem. Phys. 110, p. 8919CrossRefADSGoogle Scholar
  10. 10.
    S. Nielsen, R. Kapral, and G. Ciccotti (2000) Mixed quantum-classical surface hopping dynamics. J. Chem. Phys. 112, p. 6543CrossRefADSGoogle Scholar
  11. 11.
    S. Nielsen, R. Kapral, and G. Ciccotti (2001) Statistical mechanics of quantum classical systems. J. Chem. Phys. 115, p. 5805CrossRefADSGoogle Scholar
  12. 12.
    A. Sergi and R. Kapral (2004) Quantum-classical limit of quantum correlation functions. J. Chem. Phys. 121, p. 7565CrossRefADSGoogle Scholar
  13. 13.
    C. C. Martens and J.-Y. Fang (1997) Semiclassical-limit molecular dynamics on multiple electronic surfaces. J. Chem. Phys. 106, p. 4918CrossRefADSGoogle Scholar
  14. 14.
    A. Donoso and C. C. Martens (2000) Semiclassical multistate Liouville dynamics in the adiabatic representation. J. Chem. Phys. 112, p. 3980CrossRefADSGoogle Scholar
  15. 15.
    C. C. Martens and A. Donoso (1997) Simulation of coherent nonadiabatic dynamics using classical trajectories. J. Phys. Chem. A 102, p. 4291Google Scholar
  16. 16.
    S. Bonella and D. F. Coker (2005) Land-map, a linearized approach to nonadiabatic dynamics using the mapping formalism. J. Chem. Phys. 122, p. 194102CrossRefADSGoogle Scholar
  17. 17.
    S. Bonella, D. Montemayor, and D. F. Coker (2005) Linearized path integral approach for calculating nonadiabatic time correlation functions. Proc. Natl. Acad. Sci. 102, pp. 6715–6719CrossRefADSGoogle Scholar
  18. 18.
    J. A. Poulsen, G. Nyman, and P. J. Rossky (2003) Practical evaluation of condensed phase quantum correlation functions: A Feynman-Kleinert variational linearized path integral method. J. Chem. Phys. 119, p. 12179CrossRefADSGoogle Scholar
  19. 19.
    J. A. Poulsen, G. Nyman, and P. J. Rossky (2004) Determination of the Van Hove spectrum of liquid He(4): An application of Feynman-Kleinert linearized path integral methodology. J. Phys. Chem. A 108, p. 8743CrossRefGoogle Scholar
  20. 20.
    J. A. Poulsen, G. Nyman, and P. J. Rossky (2005) Static and dynamic quantum effects in molecular liquids: A linearized path integral description of water. Proc. Natl. Acad. Sci. 102, p. 6709CrossRefADSGoogle Scholar
  21. 21.
    Q. Shi and E. Geva (2003) A relationship between semiclassical and centroid correlation functions. J. Chem. Phys. 118, p. 8173CrossRefADSGoogle Scholar
  22. 22.
    Q. Shi and E. Geva (2004) A semiclassical generalized quantum master equation for an arbitrary system-bath coupling. J. Chem. Phys. 120, p. 10647CrossRefADSGoogle Scholar
  23. 23.
    Q. Shi and E. Geva (2003) Semiclassical theory of vibrational energy relaxation in the condensed phase. J. Phys. Chem. A 107, p. 9059CrossRefGoogle Scholar
  24. 24.
    Q. Shi and E. Geva (2003) Vibrational energy relaxation in liquid oxygen from semiclassical molecular dynamics. J. Phys. Chem. A 107, p. 9070CrossRefGoogle Scholar
  25. 25.
    M. F. Herman and D. F. Coker (1999) Classical mechanics and the spreading of localized wavepackets in condensed phase molecular systems. J. Chem. Phys. 111, p. 1801CrossRefADSGoogle Scholar
  26. 26.
    R. Hernandez and G. Voth (1998) Quantum time correlation functions and classical coherence. Chem. Phys. Lett. 223, p. 243Google Scholar
  27. 27.
    H. D. Meyer and W. H. Miller (1979) A Classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70, p. 3214CrossRefADSGoogle Scholar
  28. 28.
    W. H. Miller and C. W. McCurdy (1978) Classical trajectory model for electronically nonadiabatic collision phenomena. A classical analog for electronic degrees of freedom. J. Chem. Phys. 69, p. 5163CrossRefADSGoogle Scholar
  29. 29.
    C. W. McCurdy, H. D. Meyer, and W. H. Miller (1979) Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(2 P 1/2)+H+,Xe → F(2 P 3/2)+H+,Xe. J. Chem. Phys. 70, p. 3177CrossRefADSGoogle Scholar
  30. 30.
    G. Stock and M. Thoss (1997) Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78, p. 578zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    G. Stock and M. Thoss (1999) Mapping approach to the semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. A 59, p. 64CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    G. Ciccotti, C. Pierleoni, F. Capuani, and V. S. Filinov (1999) Wigner approach to the semiclassical dynamics of a quantum many-body system: the dynamic scattering function of 4He. Comp. Phys. Commun. 121, p. 452CrossRefADSGoogle Scholar
  33. 33.
    X. Sun and W. H. Miller (1997) Mixed semiclassical-classical approaches to the dynamics of complex molecular systems. J. Chem. Phys. 106, p. 916CrossRefADSGoogle Scholar
  34. 34.
    H. Wang, X. Sun, and W. H. Miller (1998) Semicalssical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys. 108, p. 9726CrossRefADSGoogle Scholar
  35. 35.
    X. Sun, H. B. Wang, and W. H. Miller (1998) On the semiclassical description of quantum coherence in thermal rate constants. J. Chem. Phys. 109, p. 4190CrossRefADSGoogle Scholar
  36. 36.
    X. Sun, H. B. Wang, and W. H. Miller (1998) Semiclassical theory of electronically nonadaibatic molecular dynamics: Results of a linearized approximation to the initial value representation. J. Chem. Phys. 109, p. 7064CrossRefADSGoogle Scholar
  37. 37.
    W. H. Miller (2001) The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105, p. 2942CrossRefGoogle Scholar
  38. 38.
    H. Wang, M. Thoss, and W. H. Miller (2001) Generalized forward-backward initial value representation for the calculation of correlation functions in complex systems. J. Chem. Phys. 114, p. 9220CrossRefADSGoogle Scholar
  39. 39.
    S. Zhang and E. Pollak (2003) Quantum dynamics for dissipative systems : A numerical study of the Wigner-Fokker-Planck equation. J. Chem. Phys. 118, p. 4357CrossRefADSGoogle Scholar
  40. 40.
    D. F. Coker and S. Bonella (2006) Linearized non-adiabatic dynamics in the adiabatic representation. In David Micha and Irene Burghardt, editors, Quantum dynamics of complex molecular systems. Springer-Verlag, Berlin, p. 307Google Scholar
  41. 41.
    H. Kleinert (2004) Path Integrals in Quantum Mechanics, Statics, Polymer Physics and Financial Markets. World Scientific, SingaporeGoogle Scholar
  42. 42.
    M. F. Herman and E. Kluk (1984) A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91, p. 27CrossRefGoogle Scholar
  43. 43.
    W. H. Miller (2002) An alternate derivation of the herman-kluk (coherent state) semiclassical initial value representation of the time evolution operator. Mol. Phys. 100, p. 397CrossRefADSGoogle Scholar
  44. 44.
    X. Sun and W. H. Miller (1997) Semiclassical initial value representation for electronically nonadaibatic molecular dynamics. J. Chem. Phys. 106, p. 6346CrossRefADSGoogle Scholar
  45. 45.
    G. Stock and M. Thoss (2005) Classical description of nonadiabatic quantum dynamics. Adv. Chem. Phys. 131, p. 243CrossRefGoogle Scholar
  46. 46.
    P. Pechukas (1969) Time-dependent semiclassical scattering theory. II. Atomic collisions. Phys. Rev. 181, p. 174CrossRefADSGoogle Scholar
  47. 47.
    J. C. Tully (1990) Molecular dynamics with electronic transitions. J. Chem. Phys. 93, p. 1061CrossRefADSGoogle Scholar
  48. 48.
    S. Bonella and D. F. Coker (2003) Semi-classical implementation of the mapping Hamiltonian approach for non-adiabatic dynamics: Focused initial distribution sampling. J. Chem. Phys. 118, p. 4370CrossRefADSGoogle Scholar
  49. 49.
    O. Prezhdo B. Schwartz, E. Bittner, and P. Rossky (1996) Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 104, p. 5942CrossRefADSGoogle Scholar
  50. 50.
    E. Bittner and P. Rossky (1997) Decoherent histories and non adiabatic quantum molecular dinamics simulations. J. Chem. Phys. 107, p. 8611CrossRefADSGoogle Scholar
  51. 51.
    M. Ben-Nun and T. J. Martinez (1998) Nonadiabatic molecular dynamics: Validation of the multiple spawining method for a multidimensional problem. J. Chem. Phys. 108, p. 7244CrossRefADSGoogle Scholar
  52. 52.
    M. Ben-Nun and T. J. Martinez (2000) A multiple spawning approach to tunneling dynamics. J. Chem. Phys. 112, p. 6113CrossRefADSGoogle Scholar
  53. 53.
    M. Ben-Nun, J. Quenneville, and T. J. Martinez (2000) Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, p. 5161CrossRefGoogle Scholar
  54. 54.
    M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J. Martinez (2001) Comparison of full multiple spawning, trajectory surface hopping and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 115, p. 1172CrossRefADSGoogle Scholar
  55. 55.
    M. Ben-Nun and T. J. Martinez (2002) Ab initio quantum molecular dynamics. Adv. Chem. Phys. 121, p. 439CrossRefGoogle Scholar
  56. 56.
    S. Bonella and D. F. Coker (2001) A semi-classical limit for the mapping Hamiltonian approach to electronically non-adiabatic dynamics. J. Chem. Phys. 114, p. 7778CrossRefADSGoogle Scholar
  57. 57.
    S. Bonella and D. F. Coker (2001) Semi-classical implementation of mapping Hamiltonian methods for general non-adiabatic problems. Chem. Phys. 268, p. 323CrossRefGoogle Scholar
  58. 58.
    S. Causo, G. Ciccotti, D. Montemayor, S. Bonella, and D.F. Coker (2005) An adiabatic linearized path integral approach for quantum time correlation functions: Electronic transport in metal-molten salt solutions. J. Phys. Chem. B 109, p. 6855CrossRefGoogle Scholar
  59. 59.
    C. H. Mak and D. Chandler (1991) Coherent-incoherent transition and relaxation in condensed phase tunneling systems. Phys. Rev. A 44, p. 2352CrossRefADSGoogle Scholar
  60. 60.
    M. Topaler and N. Makri (1994) Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories. J. Chem. Phys. 101, p. 7500CrossRefADSGoogle Scholar
  61. 61.
    K. Thompson and N. Makri (1999) Influence functionals with semiclassical propagators in combined forward-backward time. J. Chem. Phys. 110, p. 1343CrossRefADSGoogle Scholar
  62. 62.
    K. Thompson and N. Makri (1998) Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291, p. 101CrossRefGoogle Scholar
  63. 63.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger (1987) Dynamics of the dissipative two state system. Rev. Mod. Phys. 59, p. 1CrossRefADSGoogle Scholar
  64. 64.
    R. Egger and C. H. Mak (1994) Low temperature dynamical simulation of spinboson systems. Phys. Rev. B 50, p. 15210CrossRefADSGoogle Scholar
  65. 65.
    D. G. Evans, A. Nitzan, and M. A. Ratner (1998) Photoinduced electron transfer in mixed valence compounds: Beyond the golden rule regime. J. Chem. Phys. 108, p. 6387CrossRefADSGoogle Scholar
  66. 66.
    G. Stock (1995) A semiclassical self-consistent-field approach to dissipative dynamics: The spin-boson problem. J. Chem. Phys. 103, p. 1561CrossRefADSGoogle Scholar
  67. 67.
    A. Golosov and D. R. Reichman (2001) Classical mapping approaches for nonadiabatic dynamics: Short time analysis. J. Chem. Phys. 114, p. 1065CrossRefADSGoogle Scholar
  68. 68.
    D. Mac Kernan, G. Ciccotti, and R. Kapral (2002) Surface hopping dynamics of a spin boson system. J. Chem. Phys. 116, p. 2346CrossRefADSGoogle Scholar
  69. 69.
    M. A. Bredig (1964) Molten Salt Chemistry. Interscience, New York, NYGoogle Scholar
  70. 70.
    W. Freyland, K. Garbade, and E. Pfeiffer (1983) Optical study of electron localization approaching a polarization catastrophe in liquid Kx-KCl1−x. Phys. Rev. Lett. 51, p. 1304CrossRefADSGoogle Scholar
  71. 71.
    E. S. Fois, A. Selloni, and M. Parrinello (1989) Approach to metallic behavior in metal-molten-salt solutions. Phys. Rev. 39, p. 4812ADSCrossRefGoogle Scholar
  72. 72.
    A. Selloni, P. Carnevali, R. Car, and M. Parrinello (1987) Localization, hopping, and diffusion of electrons in molten salts. Phys. Rev. Lett. 59, p. 823CrossRefADSGoogle Scholar
  73. 73.
    R. Resta (1988) Quantum-mechanical position operator in extended systems. Phys. Rev. Lett. 80, p. 1800CrossRefADSGoogle Scholar
  74. 74.
    S. Causo, G. Ciccotti, S. Bonella, and R. Vuillemier. (2006) An adiabatic linearized path integral approach for quantum time correlation functions II: A cumulant expansion method for improving convergence. To appear in J. Phys. Chem.B.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D.F. Coker
    • 1
  • S. Bonella
    • 2
  1. 1.Department of ChemistryBoston UniversityBostonUSA
  2. 2.NEST Scuola Normale SuperiorePisa

Personalised recommendations