Advertisement

Path Resummations and the Fermion Sign Problem

  • A. Alavi
  • A.J.W. Thom
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

Abstract

We review a recent method we have developed for Fermion quantum Monte Carlo. By using combinatorial arguments to perform resummations over paths, we reformulate the stochastic problem of sampling paths in terms of sampling “graphs”, which are much better behaved with regards sign-cancellation problems encountered in path-integral simulations of Fermions. Detailed mathematical derivations of the new results are presented.

Keywords

Hubbard Model Fermion System Slater Determinant Star Graph Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. W. Thom and A. Alavi (2005) A combinatorial approach to the electron correlation problem. J. Chem. Phys. 123, pp. 204106CrossRefADSGoogle Scholar
  2. 2.
    R. P. Feynman (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 20, pp. 367–387CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    R. P. Feynman, A. R. Hibbs (1965) Quantum Mechanics and Path Integrals, McGraw-Hill.Google Scholar
  4. 4.
    W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal (2001) Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, pp. 33–83CrossRefADSGoogle Scholar
  5. 5.
    D. M. Ceperley (1992) Path-integral calculations of normal liquid-He-3. Phys. Rev. Lett. 69, pp. 331–334CrossRefADSGoogle Scholar
  6. 6.
    For a comprehensive account of many quantum chemical methods see Modern Electronic Structure Theory by P. Jorgensen, J. Olsen and T. Helgaker (2000) Wiley, New YorkGoogle Scholar
  7. 7.
    J. B. Anderson (1975) Random-walk simulation of Schrodinger equation - H+3. J. Chem. Phys. 63, pp. 1499–1503; ibid. (1976) Quantum chemistry by randomwalk. 65, pp. 4121–4127Google Scholar
  8. 8.
    A. Luchow and J. B. Anderson (1996) First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo. J. Chem. Phys. 105, pp. 7573–7578CrossRefADSGoogle Scholar
  9. 9.
    M. E. Tuckerman and A. Hughes (1998) In “Classical and Quantum Dynamics in condensed systems”, ed. B. J. Berne, G. Ciccotti, D. F. Coker, World ScientificGoogle Scholar
  10. 10.
    D. E. Knuth (1973) In “The Art of Computer Programming, Volume 1: Fundamental Algorithms”, Addison WesleyGoogle Scholar
  11. 11.
    F. Becca, A. Parola, S. Sorella (2000) Ground-state properties of the Hubbard model by Lanczos diagonalizations. Phys. Rev. B 61, pp. R16287–R16290CrossRefADSGoogle Scholar
  12. 12.
    R. W. Hall (2002) An adaptive, kink-based approach to path integral calculations. J. Chem. Phys. 116, pp. 1–7CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Alavi
    • 1
  • A.J.W. Thom
    • 2
  1. 1.Chemistry DepartmentUniversity of CambridgeCambridgeU.K.
  2. 2.Chemistry DepartmentUniversity of CambridgeCambridgeU.K.

Personalised recommendations