Generic Sampling Strategies for Monte Carlo Simulation of Phase Behaviour

  • N.B. Wilding
Part of the Lecture Notes in Physics book series (LNP, volume 703)


The phenomenon of phase behavior is the organization of many-body systems into forms which reflect the interplay between constraints imposed macroscopically (through the prevailing external conditions) and microscopically (through the interactions between the elementary constituents). In this article we focus on generic computational strategies needed to address the problems of phase behavior, or more specifically the task of mapping equilibrium phase boundaries.


Monte Carlo Sampling Distribution Extended Sampling Coexistence Curve Umbrella Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    In the arguments of exponentials we shall generally absorb factors of kT ≡ 1/β into effective energy functionsGoogle Scholar
  2. 2.
    K. Binder and D. W. Heermann (1998) Monte Carlo Simulation in Statistical Physics. Springer, Berlin HeidelbergGoogle Scholar
  3. 3.
    D. P. Landau and K. Binder (2000) A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University PressGoogle Scholar
  4. 4.
    D. Frenkel and B. Smit (1996) Understanding Molecular Simulation. Academic PressGoogle Scholar
  5. 5.
    O. Narayan and A. P. Young (2001) Convergence of Monte Carlo simulations to equilibrium. Phys. Rev. E 64, 021104CrossRefADSGoogle Scholar
  6. 6.
    In general the expectation value of an observable which is an exponential function of some extensive (“macroscopic”) property cannot be reliably estimated from its sample average if one chooses P S = P 0 Google Scholar
  7. 7.
    Throughout this section we use the notation in which the phase label is absorbed into an extended macrostate label C. The path defined by the set of macrostates {C} may (and sometimes will) extend from one phase to anotherGoogle Scholar
  8. 8.
    We shall refer to a field λ and a macrovariable M as conjugate if the λ-dependence of the configurational energy is of the form ε({q}, c, λ) = ε({q}, c) − λM({q})Google Scholar
  9. 9.
    It would be more conventional to refer to “densities”, which are intensive. But we prefer to deal with their extensive counterparts, which we shall refer to as macrovariables. The preference reflects our focus on simulation studies which are necessarily conducted on systems of some given (finite) sizeGoogle Scholar
  10. 10.
    D. Frenkel and A. J. C. Ladd (1984) New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, p. 3188CrossRefADSGoogle Scholar
  11. 11.
    Y. Iba (2001) Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 12, p. 623CrossRefADSGoogle Scholar
  12. 12.
    C. J. Geyer and E. A. Thompson (1992) Constrained Monte-Carlo Maximum-Likelihood For Dependent Data. J. R. Statist. Soc. B 54, p. 657MathSciNetGoogle Scholar
  13. 13.
    K. Hukushima, H. Takayama and K. Nemoto (1996) Application of an extended ensemble method to spin glasses. Int. J. Mod. Phys. C. 3, p. 337CrossRefADSGoogle Scholar
  14. 14.
    E. Marinari (1997) Optimized Monte Carlo Methods in Advances in Computer Simulation ed J. Kertesz and I. Kondor. Springer VerlagGoogle Scholar
  15. 15.
    More explicitly C 1 ≡ α, c and C 2 ≡ α, c Google Scholar
  16. 16.
    G. M. Torrie and J. P. Valleau (1977) Monte-Carlo Free-Energy Estimates Using Non-Boltzmann Sampling – Application to Subcritical Lennard-Jones Fluid. Chem. Phys. Lett. 28, p. 578; ibid. (1974) Non-Physical Sampling Distributions in Monte-Carlo Free-Energy Estimation – Umbrella Sampling. J. Comp. Phys. 23, p. 187Google Scholar
  17. 17.
    A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov and P. N. Vorontsov-Velyaminov (1992) New Approach to Monte-Carlo Calculation of the Free-Energy – Method of Expanded Ensembles. J. Chem. Phys. 96, p. 1776CrossRefADSGoogle Scholar
  18. 18.
    E. Marinari and G. Parisi (1992) Simulated Tempering – A New Monte-Carlo Scheme. Europhysics Lett. 19, p. 451ADSCrossRefGoogle Scholar
  19. 19.
    J. P. Valleau (1999) Thermodynamic-Scaling Methods in Monte Carlo and their application to phase equilibria. Adv. Chem. Phys. 105, p. 369CrossRefGoogle Scholar
  20. 20.
    M. Mezei (1987) Adaptive Umbrella Sampling – Self-Consistent Determination of the Non-Boltzmann Bias. J. Comp. Phys. 68, p. 237zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    B. A. Berg and T. Neuhaus (1991) Multicanonical Algorithms for 1st Order Phase-Transitions. Phys. Lett. B 267, p. 249; ibid. (1992) Multicanonical Ensemble – A New Approach to Simulate 1st-Order Phase-Transitions. Phys. Rev. Lett. 68, p. 9Google Scholar
  22. 22.
    In this section we refer to E rather than its dimensionless counterpart ε ≡βE, since it seems advisable to make the measure of temperature β = 1/kT explicitGoogle Scholar
  23. 23.
    J. Lee (1993) New Monte-Carlo Algorithm – Entropic Sampling. Phys. Rev. Lett. 71, p. 211; Erratum: ibid. 71, p. 2353Google Scholar
  24. 24.
    F. Wang and D. P. Landau (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, p. 2050; ibid. (2001) Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101Google Scholar
  25. 25.
    Different authors have made different choices of notation and adopted different sign conventions at this point. We adopt those of [26]Google Scholar
  26. 26.
    G. R. Smith and A. D. Bruce (1995) A study of the multi-canonical Monte Carlo method. J. Phys. A 28, p. 6623zbMATHCrossRefADSGoogle Scholar
  27. 27.
    The constant k merely serves to assign a convenient lower (or upper) bound to the weights; the value chosen is absorbed in the normalization of the sampling distributionGoogle Scholar
  28. 28.
    B. A. Berg (1993) Multicanonical Monte-Carlo Simulations. Int. J. Mod. Phys. C 4, p. 249; ibid. (2000) Introduction to Multicanonical Monte Carlo Simulation. Fields Inst. Commun. 26, p. 1Google Scholar
  29. 29.
    The WL scheme is terminated when the histogram is “suffciently” flat and the weight-modification factor f is “suffciently” close to unity.Google Scholar
  30. 30.
    Q. Yan, R. Faller and J. J. de Pablo (2002) Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, p. 8745CrossRefADSGoogle Scholar
  31. 31.
    There is a caveat here: the traverse through the interesting region needs to be slow enough to allow a rough local equilibrium in each macrostate to be established; this condition is satisfied relatively poorly at the outset (where the MC trajectory heads rapidly for the equilibrium states); but it gets better the closer the sampling distribution comes to the multicanonical limit; one requires no more than thisGoogle Scholar
  32. 32.
    G. R. Smith & A. D. Bruce (1996) Multicanonical Monte Carlo study of solid-solid phase coexistence in a model colloid. Phys. Rev. E 53, p. 6530CrossRefADSGoogle Scholar
  33. 33.
    P. M. C. de Oliveira, T. J. P. Penna and H. J. Herrmann (1996) Broad histogram Monte Carlo. Braz. J. Phys. 26, p. 677; ibid. (1998) Broad histogram Monte Carlo. Eur. Phys. J. B 1, p. 205; P. M. C. de Oliveira (1998) Broad histogram relation is exact. Eur. Phys. J. B 6, p. 111Google Scholar
  34. 34.
    J. S. Wang and L. W. Lee (2000) Monte Carlo algorithms based on the number of potential moves. Comput. Phys. Commun. 127, p. 131zbMATHCrossRefADSGoogle Scholar
  35. 35.
    J. S. Wang, T. K. Tay, and R. H. Swendsen (1999) Transition matrix Monte Carlo reweighting and dynamics. Phys. Rev. Lett. 82, p. 476; J. S. Wang and R. H. Swendsen (2002) Transition matrix Monte Carlo method. J. Stat. Phys. 106, p. 245Google Scholar
  36. 36.
    It reduces to the familiar form with the macrovariables M 1 and M 2 chosen as respectively the enthalpy and the volume whose conjugate fields are 1/T and P/T Google Scholar
  37. 37.
    D. A. Kofke (1993) Direct Evaluation of Phase Coexistence by Molecular Simulation via Integration along the Saturation Line. J. Chem. Phys. 98, p. 4149; R. Agrawal and D. A. Kofke (1995) Solid-Fluid Coexistence for Inverse-Power Potentials. Phys. Rev. Lett. 74, p. 122Google Scholar
  38. 38.
    P. G. Bolhuis and D. A. Kofke (1996) Monte carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, p. 634; D. A. Kofke and P. G. Bolhuis (1999) Freezing of polydisperse hard spheres. Phys. Rev. E 59, p. 618; M. Lisal and V. Vacek (1996) Direct evaluation of vapour-liquid equilibria of mixtures by molecular dynamics using Gibbs-Duhem integration. Molecular Simulation 18, p. 75; F. A. Escobedo and J. J. de Pablo (1997) Pseudo-ensemble simulations and Gibbs-Duhem integrations for polymers. J. Chem. Phys. 106, p. 2911Google Scholar
  39. 39.
    A. M. Ferrenberg and R. H. Swendsen (1989) New Monte-Carlo Technique for Studying Phase-Transitions. Phys. Rev. Lett. 61, p. 2635; ibid. (1989) Optimized Monte-Carlo Data-Analysis. Phys. Rev. Lett. 63, p. 1195; R. H. Swendsen (1993) Modern Methods of Analyzing Monte-Carlo Computer-Simulations. Physica A 194, p. 53Google Scholar
  40. 40.
    Recall that knowing the weights that define a multicanonical distribution of some quantity M over some range is equivalent to knowing the true canonical M-distribution throughout the chosen range Google Scholar
  41. 41.
    Q. Yan and J. J. de Pablo (1999) Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111, p. 9509CrossRefADSGoogle Scholar
  42. 42.
    B. A. Berg, U. H. E. Hansmann and T. Neuhaus (1993) Properties of Interfaces in the 2 and 3-Dimensional Ising-Model. Z. Phys. B 90, p. 229CrossRefADSGoogle Scholar
  43. 43.
    B. Grossmann, M. L. Laursen, T. Trappenberg and U. J. Wiese (1992) A Multicanonical Algorithm for Su (3) Pure Gauge-Theory. Phys. Lett. B 293, p. 175CrossRefADSGoogle Scholar
  44. 44.
    Reference [45] and N. B. Wilding (unpublished)Google Scholar
  45. 45.
    N. B. Wilding (1995) Critical-Point and Coexistence-Curve Properties of the Lennard-Jones Fluid – A Finite-Size-Scaling Study. Phys. Rev. E 52, p. 602CrossRefADSGoogle Scholar
  46. 46.
    N. B. Wilding and A. D. Bruce (2000) Freezing by Monte Carlo phase switch. Phys. Rev. Lett. 85, p. 5138CrossRefADSGoogle Scholar
  47. 47.
    D. Alfe, G. A. De Wijs, G. Kresse, M. J. Gillan (2000) Recent developments in ab initio thermodynamics. Int. J. Quant. Chem. 77, p. 871CrossRefGoogle Scholar
  48. 48.
    G. J. Ackland (2002) Calculation of free energies from ab initio calculation. J. Phys. Condens. Mat. 14, p. 2975CrossRefADSGoogle Scholar
  49. 49.
    F. H. Zong, D. M. Ceperley (1998) Path integral Monte Carlo calculation of electronic forces. Phys. Rev. E 58, p. 5123; C. Rickwardt, P. Nielaba, M. H. Muser and K. Binder (2001) Path integral Monte Carlo simulations of silicates. Phys. Rev. B 63, 045204Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • N.B. Wilding
    • 1
  1. 1.Department of PhysicsUniversity of BathBathU.K.

Personalised recommendations