# Generic Sampling Strategies for Monte Carlo Simulation of Phase Behaviour

• N.B. Wilding
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

## Abstract

The phenomenon of phase behavior is the organization of many-body systems into forms which reflect the interplay between constraints imposed macroscopically (through the prevailing external conditions) and microscopically (through the interactions between the elementary constituents). In this article we focus on generic computational strategies needed to address the problems of phase behavior, or more specifically the task of mapping equilibrium phase boundaries.

## Keywords

Monte Carlo Sampling Distribution Extended Sampling Coexistence Curve Umbrella Sampling
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
In the arguments of exponentials we shall generally absorb factors of kT ≡ 1/β into effective energy functionsGoogle Scholar
2. 2.
K. Binder and D. W. Heermann (1998) Monte Carlo Simulation in Statistical Physics. Springer, Berlin HeidelbergGoogle Scholar
3. 3.
D. P. Landau and K. Binder (2000) A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University PressGoogle Scholar
4. 4.
D. Frenkel and B. Smit (1996) Understanding Molecular Simulation. Academic PressGoogle Scholar
5. 5.
O. Narayan and A. P. Young (2001) Convergence of Monte Carlo simulations to equilibrium. Phys. Rev. E 64, 021104
6. 6.
In general the expectation value of an observable which is an exponential function of some extensive (“macroscopic”) property cannot be reliably estimated from its sample average if one chooses P S = P 0 Google Scholar
7. 7.
Throughout this section we use the notation in which the phase label is absorbed into an extended macrostate label C. The path defined by the set of macrostates {C} may (and sometimes will) extend from one phase to anotherGoogle Scholar
8. 8.
We shall refer to a field λ and a macrovariable M as conjugate if the λ-dependence of the configurational energy is of the form ε({q}, c, λ) = ε({q}, c) − λM({q})Google Scholar
9. 9.
It would be more conventional to refer to “densities”, which are intensive. But we prefer to deal with their extensive counterparts, which we shall refer to as macrovariables. The preference reflects our focus on simulation studies which are necessarily conducted on systems of some given (finite) sizeGoogle Scholar
10. 10.
D. Frenkel and A. J. C. Ladd (1984) New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J. Chem. Phys. 81, p. 3188
11. 11.
Y. Iba (2001) Extended ensemble Monte Carlo. Int. J. Mod. Phys. C 12, p. 623
12. 12.
C. J. Geyer and E. A. Thompson (1992) Constrained Monte-Carlo Maximum-Likelihood For Dependent Data. J. R. Statist. Soc. B 54, p. 657
13. 13.
K. Hukushima, H. Takayama and K. Nemoto (1996) Application of an extended ensemble method to spin glasses. Int. J. Mod. Phys. C. 3, p. 337
14. 14.
E. Marinari (1997) Optimized Monte Carlo Methods in Advances in Computer Simulation ed J. Kertesz and I. Kondor. Springer VerlagGoogle Scholar
15. 15.
More explicitly C 1 ≡ α, c and C 2 ≡ α, c Google Scholar
16. 16.
G. M. Torrie and J. P. Valleau (1977) Monte-Carlo Free-Energy Estimates Using Non-Boltzmann Sampling – Application to Subcritical Lennard-Jones Fluid. Chem. Phys. Lett. 28, p. 578; ibid. (1974) Non-Physical Sampling Distributions in Monte-Carlo Free-Energy Estimation – Umbrella Sampling. J. Comp. Phys. 23, p. 187Google Scholar
17. 17.
A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov and P. N. Vorontsov-Velyaminov (1992) New Approach to Monte-Carlo Calculation of the Free-Energy – Method of Expanded Ensembles. J. Chem. Phys. 96, p. 1776
18. 18.
E. Marinari and G. Parisi (1992) Simulated Tempering – A New Monte-Carlo Scheme. Europhysics Lett. 19, p. 451
19. 19.
J. P. Valleau (1999) Thermodynamic-Scaling Methods in Monte Carlo and their application to phase equilibria. Adv. Chem. Phys. 105, p. 369
20. 20.
M. Mezei (1987) Adaptive Umbrella Sampling – Self-Consistent Determination of the Non-Boltzmann Bias. J. Comp. Phys. 68, p. 237
21. 21.
B. A. Berg and T. Neuhaus (1991) Multicanonical Algorithms for 1st Order Phase-Transitions. Phys. Lett. B 267, p. 249; ibid. (1992) Multicanonical Ensemble – A New Approach to Simulate 1st-Order Phase-Transitions. Phys. Rev. Lett. 68, p. 9Google Scholar
22. 22.
In this section we refer to E rather than its dimensionless counterpart ε ≡βE, since it seems advisable to make the measure of temperature β = 1/kT explicitGoogle Scholar
23. 23.
J. Lee (1993) New Monte-Carlo Algorithm – Entropic Sampling. Phys. Rev. Lett. 71, p. 211; Erratum: ibid. 71, p. 2353Google Scholar
24. 24.
F. Wang and D. P. Landau (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, p. 2050; ibid. (2001) Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101Google Scholar
25. 25.
26. 26.
G. R. Smith and A. D. Bruce (1995) A study of the multi-canonical Monte Carlo method. J. Phys. A 28, p. 6623
27. 27.
The constant k merely serves to assign a convenient lower (or upper) bound to the weights; the value chosen is absorbed in the normalization of the sampling distributionGoogle Scholar
28. 28.
B. A. Berg (1993) Multicanonical Monte-Carlo Simulations. Int. J. Mod. Phys. C 4, p. 249; ibid. (2000) Introduction to Multicanonical Monte Carlo Simulation. Fields Inst. Commun. 26, p. 1Google Scholar
29. 29.
The WL scheme is terminated when the histogram is “suffciently” flat and the weight-modification factor f is “suffciently” close to unity.Google Scholar
30. 30.
Q. Yan, R. Faller and J. J. de Pablo (2002) Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, p. 8745
31. 31.
There is a caveat here: the traverse through the interesting region needs to be slow enough to allow a rough local equilibrium in each macrostate to be established; this condition is satisfied relatively poorly at the outset (where the MC trajectory heads rapidly for the equilibrium states); but it gets better the closer the sampling distribution comes to the multicanonical limit; one requires no more than thisGoogle Scholar
32. 32.
G. R. Smith & A. D. Bruce (1996) Multicanonical Monte Carlo study of solid-solid phase coexistence in a model colloid. Phys. Rev. E 53, p. 6530
33. 33.
P. M. C. de Oliveira, T. J. P. Penna and H. J. Herrmann (1996) Broad histogram Monte Carlo. Braz. J. Phys. 26, p. 677; ibid. (1998) Broad histogram Monte Carlo. Eur. Phys. J. B 1, p. 205; P. M. C. de Oliveira (1998) Broad histogram relation is exact. Eur. Phys. J. B 6, p. 111Google Scholar
34. 34.
J. S. Wang and L. W. Lee (2000) Monte Carlo algorithms based on the number of potential moves. Comput. Phys. Commun. 127, p. 131
35. 35.
J. S. Wang, T. K. Tay, and R. H. Swendsen (1999) Transition matrix Monte Carlo reweighting and dynamics. Phys. Rev. Lett. 82, p. 476; J. S. Wang and R. H. Swendsen (2002) Transition matrix Monte Carlo method. J. Stat. Phys. 106, p. 245Google Scholar
36. 36.
It reduces to the familiar form with the macrovariables M 1 and M 2 chosen as respectively the enthalpy and the volume whose conjugate fields are 1/T and P/T Google Scholar
37. 37.
D. A. Kofke (1993) Direct Evaluation of Phase Coexistence by Molecular Simulation via Integration along the Saturation Line. J. Chem. Phys. 98, p. 4149; R. Agrawal and D. A. Kofke (1995) Solid-Fluid Coexistence for Inverse-Power Potentials. Phys. Rev. Lett. 74, p. 122Google Scholar
38. 38.
P. G. Bolhuis and D. A. Kofke (1996) Monte carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, p. 634; D. A. Kofke and P. G. Bolhuis (1999) Freezing of polydisperse hard spheres. Phys. Rev. E 59, p. 618; M. Lisal and V. Vacek (1996) Direct evaluation of vapour-liquid equilibria of mixtures by molecular dynamics using Gibbs-Duhem integration. Molecular Simulation 18, p. 75; F. A. Escobedo and J. J. de Pablo (1997) Pseudo-ensemble simulations and Gibbs-Duhem integrations for polymers. J. Chem. Phys. 106, p. 2911Google Scholar
39. 39.
A. M. Ferrenberg and R. H. Swendsen (1989) New Monte-Carlo Technique for Studying Phase-Transitions. Phys. Rev. Lett. 61, p. 2635; ibid. (1989) Optimized Monte-Carlo Data-Analysis. Phys. Rev. Lett. 63, p. 1195; R. H. Swendsen (1993) Modern Methods of Analyzing Monte-Carlo Computer-Simulations. Physica A 194, p. 53Google Scholar
40. 40.
Recall that knowing the weights that define a multicanonical distribution of some quantity M over some range is equivalent to knowing the true canonical M-distribution throughout the chosen range Google Scholar
41. 41.
Q. Yan and J. J. de Pablo (1999) Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111, p. 9509
42. 42.
B. A. Berg, U. H. E. Hansmann and T. Neuhaus (1993) Properties of Interfaces in the 2 and 3-Dimensional Ising-Model. Z. Phys. B 90, p. 229
43. 43.
B. Grossmann, M. L. Laursen, T. Trappenberg and U. J. Wiese (1992) A Multicanonical Algorithm for Su (3) Pure Gauge-Theory. Phys. Lett. B 293, p. 175
44. 44.
Reference  and N. B. Wilding (unpublished)Google Scholar
45. 45.
N. B. Wilding (1995) Critical-Point and Coexistence-Curve Properties of the Lennard-Jones Fluid – A Finite-Size-Scaling Study. Phys. Rev. E 52, p. 602
46. 46.
N. B. Wilding and A. D. Bruce (2000) Freezing by Monte Carlo phase switch. Phys. Rev. Lett. 85, p. 5138
47. 47.
D. Alfe, G. A. De Wijs, G. Kresse, M. J. Gillan (2000) Recent developments in ab initio thermodynamics. Int. J. Quant. Chem. 77, p. 871
48. 48.
G. J. Ackland (2002) Calculation of free energies from ab initio calculation. J. Phys. Condens. Mat. 14, p. 2975
49. 49.
F. H. Zong, D. M. Ceperley (1998) Path integral Monte Carlo calculation of electronic forces. Phys. Rev. E 58, p. 5123; C. Rickwardt, P. Nielaba, M. H. Muser and K. Binder (2001) Path integral Monte Carlo simulations of silicates. Phys. Rev. B 63, 045204Google Scholar