Advertisement

Simulation Techniques for Calculating Free Energies

  • M. Müller
  • J.J. de Pablo
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

Abstract

The study of phase transitions has played a central role in the study of condensed matter. Since the first applications of molecular simulations, which provided some of the first evidence in support of a freezing transition in hardsphere systems, to contemporary research on complex systems, including polymers, proteins, or liquid crystals, to name a few, molecular simulations are increasingly providing a standard against which to measure the validity of theoretical predictions or phenomenological explanations of experimentally observed phenomena.

Keywords

Free Energy Diblock Copolymer Phase Coexistence Excess Free Energy Free Energy Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Z. Panagiotopoulos (1992) Direct determination of fluid-phase equilibria by simulation in the gibbs ensemble – A review. Molecular Simulation. 9, pp. 1–23CrossRefGoogle Scholar
  2. 2.
    A. M. Ferrenberg and R. H. Swendsen (1988) New Monte-Carlo technique for studying phase-transitions. Phys. Rev. Lett. 61, pp. 2635–2638CrossRefADSGoogle Scholar
  3. 3.
    A. M. Ferrenberg and R. H. Swendsen (1989) Optimized Monte-Carlo data-analysis. Phys. Rev. Lett. 63, pp. 1195–1198CrossRefADSGoogle Scholar
  4. 4.
    B. A. Berg and T. Neuhaus (1992) Multicanonical ensemble – a new approach to simulate 1st-order phase-transitions. Phys. Rev. Lett. 68, pp. 9–12CrossRefADSGoogle Scholar
  5. 5.
    B. A. Berg and T. Neuhaus (1991) Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267, pp. 249–253CrossRefADSGoogle Scholar
  6. 6.
    J. Lee (1993) New Monte-Carlo algorithm – entropic sampling. Phys. Rev. Lett. 71, pp. 211–214CrossRefADSGoogle Scholar
  7. 7.
    F. G. Wang and D. P. Landau (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, pp. 2050–2053CrossRefADSGoogle Scholar
  8. 8.
    Q. L. Yan, R. Faller, and J. J. de Pablo (2002) Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116, pp. 8745–8749CrossRefADSGoogle Scholar
  9. 9.
    A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsovvelyaminov (1992) New approach to Monte-Carlo calculation of the free-energy – method of expanded ensembles. J. Chem. Phys. 96, pp. 1776–1783CrossRefADSGoogle Scholar
  10. 10.
    B. A. Berg (2003) Multicanonical simulations step by step. Comp. Phys. Comm. 153, pp. 397–406; ibid. (2004) Markov Chain Monte Carlo Simulations and their Statistical Analysis. World Scientific P. 380Google Scholar
  11. 11.
    P. M. C. de Oliveira, T. J. P. Penna, and H. J. Herrmann (1996) Broad Histogram Method. Braz. J. Phys. 26, pp. 677–683Google Scholar
  12. 12.
    O. Engkvist and G. Karlstrom (1996) A method to calculate the probability distribution for systems with large energy barriers. Chem. Phys. 213, pp. 63–76CrossRefGoogle Scholar
  13. 13.
    N. Rathore and J. J. de Pablo (2002) Monte Carlo simulation of proteins through a random walk in energy space. J. Chem. Phys. 116, pp. 7225–7230CrossRefADSGoogle Scholar
  14. 14.
    N. Rathore, T. A. Knotts, and J. J. de Pablo (2003) Configurational temperature density of states simulations of proteins. Biophys. J. 85, pp. 3963–3968CrossRefGoogle Scholar
  15. 15.
    T. S. Jain and J. J. de Pablo (2002) A biased Monte Carlo technique for calculation of the density of states of polymer fllms. J. Chem. Phys. 116, pp. 7238–7243CrossRefADSGoogle Scholar
  16. 16.
    T. S. Jain and J. J. de Pablo (2003) Calculation of interfacial tension from density of states. J. Chem. Phys. 118, pp. 4226–4229CrossRefADSGoogle Scholar
  17. 17.
    Q. Yan and J. J. de Pablo (2003) Fast calculation of the density of states of a fluid by Monte Carlo simulations. Phys. Rev. Lett. 90, 035701CrossRefADSGoogle Scholar
  18. 18.
    N. Rathore, T. A. Knotts, and J. J. de Pablo (2003) Configurational temperature density of states simulations of proteins. Biophys. J. 85, pp. 3963–3968CrossRefGoogle Scholar
  19. 19.
    D. A. McQuarrie (1976) Statistical Mechanics. HarperCollins Publishers Inc., New YorkGoogle Scholar
  20. 20.
    O. G. Jepps, O. Ayton, and D. J. Evans (2000) Microscopic expressions for the thermodynamic temperature. Phys. Rev. E. 62, pp. 4757–4763CrossRefADSGoogle Scholar
  21. 21.
    B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans (1998) Configurational temperature: Verification of Monte Carlo simulations. J. Chem. Phys. 109, pp. 6519–6522CrossRefADSGoogle Scholar
  22. 22.
    J. R. Ray (1991) Microcanonical ensemble Monte-Carlo method. Phys. Rev. A 44, pp. 4061–4064CrossRefADSGoogle Scholar
  23. 23.
    R. Lustig (1998) Microcanonical Monte Carlo simulation of thermodynamic properties. J. Chem. Phys. 109, pp. 8816–8828CrossRefADSGoogle Scholar
  24. 24.
    P. Dayal, S. Trebst, S. Wessel, D. Wurtz, M. Troyer, S. Sabhapandit, and S. N. Coppersmith (2004) Performance limitations of flat-histogram methods. Phys. Rev. Lett. 92, 097201CrossRefADSGoogle Scholar
  25. 25.
    T. Lazaridis and M. Karplus (1999) Effective energy function for proteins in solution. Proteins 35, pp. 133–152CrossRefGoogle Scholar
  26. 26.
    P. Ferrara, J. Apostolakiz, and A. Caflisch (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46, pp. 24–33CrossRefGoogle Scholar
  27. 27.
    Q. L. Yan and J. J. de Pablo (1999) Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111, pp. 9509–9515CrossRefADSGoogle Scholar
  28. 28.
    E. B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo (2002) Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. J. Chem. Phys. 117, pp. 7781–7787CrossRefADSGoogle Scholar
  29. 29.
    N. Rathore, Q. L. Yan and J. J. de Pablo (2004) Molecular simulation of the reversible mechanical unfolding of proteins. J. Chem. Phys. 120, pp. 5781–5788CrossRefADSGoogle Scholar
  30. 30.
    M. Doxastakis, Y. L. Chen, and J. J. de Pablo (2005) Potential of mean force between two nanometer-scale particles in a polymer solution. J. Chem. Phys. 123, 034901CrossRefADSGoogle Scholar
  31. 31.
    T. A. Knotts, N. Rathore, and J. J. de Pablo (2005) Structure and stability of a model three-helix-bundle protein on tailored surfaces. Proteins-Structure Function and bioinformatics 61, pp. 385–397CrossRefGoogle Scholar
  32. 32.
    N. Rathore, Q. L. Yan, and J. J. de Pablo (2004) Molecular simulation of the reversible mechanical unfolding of proteins. J. Chem. Phys. 120, pp. 5781–5788CrossRefADSGoogle Scholar
  33. 33.
    M. Chopra, M. Müller, and J. J. de Pablo (2006) Order-parameter-based Monte Carlo simulation of crystallization. J. Chem. Phys. 124 p. 134102CrossRefADSGoogle Scholar
  34. 34.
    J. Valleau (1999) Thermodynamic-scaling methods in Monte Carlo and their application to phase equilibria. Adv. Chem. Phys. 105, pp. 369–404CrossRefGoogle Scholar
  35. 35.
    P. Virnau and M. Müller (2004) Calculation of free energy through successive umbrella sampling. J. Chem. Phys. 120, pp. 10925–10930CrossRefADSGoogle Scholar
  36. 36.
    B. J. Schulz, K. Binder, M. Müller, and D. P. Landau (2003) Avoiding boundary effects in Wang-Landau sampling. Phys. Rev. E 67, 067102CrossRefADSGoogle Scholar
  37. 37.
    Certainly, restricting the window size limits order parameter fluctuations to far less than those explored in a grandcanonical simulation and each subsimulations resembles more closely a simulation in the canonical ensemble than in the grandcanonical ensemble.We emphasize, however, that local density (order parameter) fluctuations are not restricted and that, ideally, configurations with a fixed order parameter have identical statistical weight in the canonical ensemble, in the ensemble used in our simulation and in the grandcanonical ensemble.Google Scholar
  38. 38.
    D. Chandler (1987) Introduction to Modern Statistical Mechanics. Oxford University Press, New YorkGoogle Scholar
  39. 39.
    D. Frenkel and B. Smith (1996) Understanding Molecular Simulation. Academic, BostonzbMATHGoogle Scholar
  40. 40.
    P. Virnau, M. Müller, L. G. MacDowell, and K. Binder (2004) Phase behavior of n-alkanes in supercritical solution: A Monte Carlo study. J. Chem. Phys. 121, pp. 2169–2179CrossRefADSGoogle Scholar
  41. 41.
    K. Binder, M. Müller, P. Virnau, and L. G. MacDowell (2005) Polymer plus solvent systems: Phase diagrams, interface free energies, and nucleation. Adv. Polym. Sci. 173, pp. 1–104Google Scholar
  42. 42.
    R. L. C. Vink and J. Horbach (2004) Grand canonical Monte Carlo simulation of a model colloid-polymer mixture: Coexistence line, critical behavior, and interfacial tension. J. Chem. Phys. 121, pp. 3253–3258CrossRefADSGoogle Scholar
  43. 43.
    R. L. C. Vink, J. Horbach, and K. Binder (2005) Capillary waves in a colloid polymer interface. J. Chem. Phys. 122, p. 134905CrossRefADSGoogle Scholar
  44. 44.
    R. L. C. Vink, J. Horbach, and K. Binder (2005) Critical phenomena in colloid polymer mixtures: Interfacial tension, order parameter, susceptibility, and coexistence diameter. Phys. Rev. E 71, 011401CrossRefADSGoogle Scholar
  45. 45.
    R. L. C. Vink, M. Schmidt (2005) Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and nonideal polymers. Phys. Rev. E 71, 051406CrossRefADSGoogle Scholar
  46. 46.
    R. L. C. Vink, and T. Schilling (2005) Interfacial tension of the isotropicnematic interface in suspensions of soft spherocylinders. Phys. Rev. E 71, 051716CrossRefADSGoogle Scholar
  47. 47.
    R. L. C. Vink, S. Wolfsheimer, and T. Schilling (2005) Isotropic-nematic interfacial tension of hard and soft rods: Application of advanced grand canonical biased-sampling techniques. J. Chem. Phys. 123, 074901CrossRefADSGoogle Scholar
  48. 48.
    J. E. Mayer and W. W. Wood (1965) Interfacial Tension effects in Finite, Periodic, Two-Dimensional Systems. J. Chem. Phys. 42, pp. 4268–4274CrossRefADSGoogle Scholar
  49. 49.
    K. Binder and M. H. Kalos (1980) Critical clusters in a supersaturated vapor - theory and Monte-Carlo simulation. J. Stat. Phys. 22, pp. 363–396CrossRefADSGoogle Scholar
  50. 50.
    H. Furukawa and K. Binder (1982) 2-phase equilibria and nucleation barriers near a critical-point. Phys. Rev. A 26, pp. 556–566CrossRefADSGoogle Scholar
  51. 51.
    B. A. Berg, U. Hansmann, and T. Neuhaus (1993) Properties of interfaces in the 2 and 3-dimensional ising-model. Z. Phys. B 90, pp. 229–239CrossRefADSGoogle Scholar
  52. 52.
    J. E. Hunter and W. P. Reinhardt (1995) Finite-size-scaling behavior of the free-energy barrier between coexisting phases – determination of the critical temperature and interfacial-tension of the Lennard-Jones fluid. J. Chem. Phys. 103, pp. 8627–8637CrossRefADSGoogle Scholar
  53. 53.
    M. Biskup, L. Chyes, and R. Kotecky (2002) On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60, pp. 21–27CrossRefADSGoogle Scholar
  54. 54.
    K. Binder (2003) Theory of the evaporation /condensation transition of equilibrium droplets in finite volumes. Physica A 319, pp. 99–114Google Scholar
  55. 55.
    L. G. MacDowell, P. Virnau, M. Müller, and K. Binder (2004) The evaporation/ condensation transition of liquid droplets. J. Chem. Phys. 120, pp. 5293–5308CrossRefADSGoogle Scholar
  56. 56.
    Generally, the density of the liquid inside the drop will also deviate from the coexistence density of the liquid. Since the compressibility of the liquid phase, however, is much smaller than that of the vapor the deviation of the density inside the drop from the coexistence value will be much smaller than the deviation in the vapor phase.Google Scholar
  57. 57.
    F. H. Stillinger Jr. (1963) Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium. J. Chem. Phys. 38, pp. 1486–1494CrossRefADSGoogle Scholar
  58. 58.
    T. Neuhaus and J. S. Hager (2003) 2D crystal shapes, droplet condensation, and exponential slowing down in simulations of first-order phase transitions. J. Stat. Phys. 113, pp. 47–83zbMATHCrossRefGoogle Scholar
  59. 59.
    K. Leung and R. K. P. Zia (1990) Geometrically induced transitions between equilibrium crystal shapes. J. Phys. A 23, pp. 4593–4602Google Scholar
  60. 60.
    L. G. MacDowell, M. Müller, C. Vega, and K. Binder (2000) Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim’s thermodynamic perturbation theory and computer simulations. J. Chem. Phys. 113, pp. 419–433CrossRefADSGoogle Scholar
  61. 61.
    J. I. Siepmann (1990) A method for the direct calculation of chemical-potentials for dense chain systems. Mol. Phys., 70, pp. 1145–1158; D. Frenkel, G. C. A. M. Mooij, and B. Smit (1992) Novel scheme to study structural and thermal properties of continuously deformable molecules. J. Phys. Condens. Matter 4, pp. 3053–3076; M. Laso, J. J. dePablo, U. W. Suter (1992) Simulation of phase-equilibria for chain molecules. J. Chem. Phys. 97, pp. 2817–2819Google Scholar
  62. 62.
    M. Müller and L. G. MacDowell (2000) Interface and surface properties of short polymers in solution: Monte Carlo simulations and self-consistent field theory. Macromolecules 33, pp. 3902–3923CrossRefADSGoogle Scholar
  63. 63.
    C. Borgs and R. Kotecky (1990) A rigorous theory of finite-size scaling at 1st-order phase-transitions. J. Stat. Phys. 61, pp. 79–119; ibid. (1992) Finite size effects at asymmetric 1st-order phase-transitions. Phys. Rev. Lett. 68, pp. 1734–1737Google Scholar
  64. 64.
    A. Sariban and K. Binder (1988) Phase-Separation of polymer mixtures in the presence of solvent. Macromolecules 21, pp. 711–726; ibid. (1991) Spinodal decomposition of polymer mixtures – a Monte-Carlo simulation. 24, pp. 578–592; ibid. (1987) Critical properties of the Flory-Huggins lattice model of polymer mixtures. J. Chem. Phys. 86, pp. 5859–5873; ibid. (1988) Interaction effects on linear dimensions of polymer-chains in polymer mixtures. Makromol. Chem. 189, pp. 2357–2365Google Scholar
  65. 65.
    M. Müller (1999) Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study. Macromol. Theory Simul. 8, pp. 343–374; M. Müller and K. Binder (1995) Computer-simulation of asymmetric polymer mixtures. Macromolecules 28, pp. 1825–1834; ibid. (1994) An algorithm for the semi-grand-canonical simulation of asymmetric polymer mixtures. Computer Phys. Comm. 84, pp. 173–185Google Scholar
  66. 66.
    R. D. Kaminski (1994) Monte-Carlo evaluation of ensemble averages involving particle number variations in dense fluid systems. J. Chem. Phys. 101, pp. 4986–4994CrossRefADSGoogle Scholar
  67. 67.
    I. Carmesin and K. Kremer (1988) The bond fluctuation method – a new e.ective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21, pp. 2819–2823; H.-P. Deutsch and K. Binder (1991) Interdiffusion and self-diffusion in polymer mixtures – a monte-carlo study. J. Chem. Phys. 94, pp. 2294–2304Google Scholar
  68. 68.
    M. L. Huggins (1941) Solutions of Long Chain Compounds. J. Chem. Phys. 9, p. 440; P. J. Flory (1941) Thermodynamics of High Polymer Solutions. J. Chem. Phys. 9, pp. 660–661Google Scholar
  69. 69.
    K. S. Schweizer and J. G. Curro (1997) Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids. Adv. Chem. Phys. 98, pp. 1–142.CrossRefGoogle Scholar
  70. 70.
    K. W. Foreman and K. F. Freed (1998) Lattice cluster theory of multicomponent polymer systems: Chain semiflexibility and specific interactions. Advances in Chemical Physics 103, pp. 335–390; K. F. Freed and J. Dudowicz (1998) Lattice cluster theory for pedestrians: The incompressible limit and the miscibility of polyolefin blends. Macromolecules 31, pp. 6681–6690Google Scholar
  71. 71.
    E. Helfand and Y. Tagami (1972) Theory of interface between immiscible polymers .2. J. Chem. Phys. 56, p. 3592; E. Helfand (1975) Theory of inhomogeneous polymers – fundamentals of Gaussian random-walk model. J. Chem. Phys. 62, pp. 999–1005Google Scholar
  72. 72.
    K. M. Hong and J. Noolandi (1981) Theory of inhomogeneous multicomponent polymer systems. Macromolecules 14, pp. 727–736; ibid., (1982) Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. 15, pp. 482–492Google Scholar
  73. 73.
    K. R. Shull (1993) Interfacial phase-transitions in block copolymer homopolymer blends. Macromolecules 26, pp. 2346–2360CrossRefADSGoogle Scholar
  74. 74.
    J. M. H. M. Scheutjens and G. J. Fleer (1979) Statistical-theory of the adsorption of interacting chain molecules .1. Partition-function, segment density distribution, and adsorption-isotherms. J. Phys. Chem. 83, pp. 1619–1635; ibid. (1980) Statistical-theory of the adsorption of interacting chain molecules .2. Train, loop, and tail size distribution. 84, pp. 178–190; ibid. (1985) Interaction between 2 adsorbed polymer layers. Macromolecules 18, pp. 1882–1900Google Scholar
  75. 75.
    M. W. Matsen (1995) Stabilizing new morphologies by blending homopolymer with block-copolymer. Phys. Rev. Lett. 74, pp. 4225–4228CrossRefADSGoogle Scholar
  76. 76.
    G. H. Fredrickson, V. Ganesan, and F. Drolet (2002) Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, pp. 16–39CrossRefADSGoogle Scholar
  77. 77.
    M. Müller and F. Schmid (2005) Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends. Adv. Polym. Sci. 185, pp. 1–58CrossRefGoogle Scholar
  78. 78.
    M. Müller (2005) Monte Carlo Simulations of Binary Polymer Liquids. In Molecular Simulation Methods for Predicting Polymer Properties, V. Galiatsatos (ed), pp. 95–152, Wiley Hoboken, NJ.Google Scholar
  79. 79.
    F. S. Bates, M. F. Schultz, J. H. Rosedale, and K. Almdal (1992) Order and Disorder in symmetrical diblock copolymer melts. Macromolecules 25, p. 5547; M. D. Gehlsen and F. S. Bates (1994) Macromolecules 27, p. 3611; F. S. Bates and G. H. Fredrickson (1994) Macromolecules 27, p. 1065Google Scholar
  80. 80.
    D. Schwahn, G. Meier, K. Mortensen, and S. Janssen (1994) On the N-scaling of the ginzburg number and the critical amplitudes in various compatible polymer blends. J. Phys. II (France) 4, pp. 837–848; H. Frielinghaus, D. Schwahn, L. Willner, and T. Springer (1997) Thermal composition fluctuations in binary homopolymer mixtures as a function of pressure and temperature. Physica B 241, pp. 1022–1024Google Scholar
  81. 81.
    P. Van Konynenburg and R. L. Scott (1980) Critical lines and phase-equilibria in binary vanderwaals mixtures. Philos. Trans. Soc. London Series A 298, pp. 495–540ADSCrossRefGoogle Scholar
  82. 82.
    H. A. Lorentz (1881) Annalen Phys. 12, p. 127ADSMathSciNetCrossRefGoogle Scholar
  83. 83.
    D. C. Berthelot (1898) r. hebd. Seanc. Acad Sci. Paris 126, p. 1703Google Scholar
  84. 84.
    G. Schneider, Z. Alwani, W. Heim, E. Horvath, and E. U. Franck (1967) Phase equilibria and critical phenomena in binary mixtures (CO2 with N-octane Nundecane N-tridecane and N-hexadecane up to 1500 bar). Chem. Ing. Techn. 39, p. 649CrossRefGoogle Scholar
  85. 85.
    T. Charoensombut-Amon, R. J. Martin, and R. Kobayashi (1986) Application of a generalized multiproperty apparatus to measure phase-equilibrium and vapor-phase densities of supercritical carbon-dioxide in normal-hexadecane systems up to 26 mpa. Fluid Phase Equilibria 31, pp. 89–104CrossRefGoogle Scholar
  86. 86.
    C. Menduina, C. McBride, and C. Vega (2001) Correctly averaged Non-Gaussian theory of rubber-like elasticity – application to the description of the behavior of poly(dimethylsiloxane) bimodal networks. Phys. Chem. Chem. Phys. 3, p. 1289CrossRefGoogle Scholar
  87. 87.
    P. G. de Gennes and J. Prost (1993) The Physics of Liquid Crystals. Clarendon Press, OxfordGoogle Scholar
  88. 88.
    L. Leibler (1980) Theory of microphase separation in block co-polymers. Macromolecules 13, pp. 1602–1617CrossRefADSGoogle Scholar
  89. 89.
    P. J. Steinhardt, D. R. Nelson, and M. Ronchetti (1983) Bond-orientational order in liquids and glasses. Phys. Rev. B 28, pp. 784–805CrossRefADSGoogle Scholar
  90. 90.
    L. D. Landau and E. M. Lifshitz (1980) Statistical Physics, 3rd, Pergamon, LondonGoogle Scholar
  91. 91.
    K. Binder (1982) Monte-Carlo calculation of the surface-tension for twodimensional and 3-dimensional lattice-gas models. Phys. Rev. A 25, pp. 1699–1709CrossRefADSGoogle Scholar
  92. 92.
    P. R. Ten Wolde, M. J. Ruiz-Montero, and D. Frenkel (1995) Numerical evidence for BCC ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, pp. 2714–2717CrossRefADSGoogle Scholar
  93. 93.
    M. J. Mandell, J. P. McTaque, and A. Rahman (1976) Crystal nucleation in a 3-dimensional lennard-jones system – molecular-dynamics study. J. Chem. Phys. 64, pp. 3699–3702CrossRefADSGoogle Scholar
  94. 94.
    C. S. Hsu and A. Rahman (1979) Crystal nucleation and growth in liquid rubidium. J. Chem. Phys. 71, p. 4974CrossRefADSGoogle Scholar
  95. 95.
    W. C. Swope and H. C. Andersen (1990) 10(6)-Particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, pp. 7042–7054CrossRefADSGoogle Scholar
  96. 96.
    J. S. van Duijneveldt and D. Frenkel (1992) Computer-simulation study of free-energy barriers in crystal nucleation. J. Chem. Phys. 96, pp. 4655–4668CrossRefADSGoogle Scholar
  97. 97.
    E. B. Kim, R. Faller, Q. Yan, N. L. Abbott, and J. J. de Pablo (2002) Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate. J. Chem. Phys. 117, pp. 7781–7787CrossRefADSGoogle Scholar
  98. 98.
    N. B. Wilding and A. D. Bruce (2000) Freezing by Monte Carlo phase switch. Phys. Rev. Lett. 85, pp. 5138–5141CrossRefADSGoogle Scholar
  99. 99.
    M. B. Sweatman (2005) Self-referential Monte Carlo method for calculating the free energy of crystalline solids. Phys. Rev. E 72, 016711CrossRefADSGoogle Scholar
  100. 100.
    D. M. Eike, J. F. Brennecke, and E. J. Maginn (2005) Toward a robust and general molecular simulation method for computing solid-liquid coexistence. J. Chem. Phys. 122, 014115CrossRefADSGoogle Scholar
  101. 101.
    D. Moroni, P. Rein ten Wolde, and P. G. Bolhuis (2005) Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, p. 235703CrossRefADSGoogle Scholar
  102. 102.
    P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel (1996) Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, pp. 9932–9947CrossRefADSGoogle Scholar
  103. 103.
    B. B. Laird and R. L. Davidchack (2005) Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation. J. Phys. Chem. B 109, pp. 17802–17812CrossRefGoogle Scholar
  104. 104.
    M. Müller, K. Binder, and W. Oed (1995) Structural and thermodynamic properties of interfaces between coexisting phases in polymer blends – a monte-carlo simulation. J. Chem. Soc. Faraday Trans. 91, pp. 2369–2379CrossRefGoogle Scholar
  105. 105.
    M. Müller and M. Schick (1996) Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer-copolymer mixture: A Monte Carlo study. J. Chem. Phys. 105, pp. 8885–8901CrossRefADSGoogle Scholar
  106. 106.
    B. Grossmann and M. L. Laursen (1993) The confined deconfined interface tension in quenched qcd using the histogram method. Nuc. Phys. B 408, pp. 637–656CrossRefADSGoogle Scholar
  107. 107.
    F. Schmid and M. Müller (1995) Quantitative comparison of self-consistent-field theories for polymers near interfaces with monte-carlo simulations. Macromolecules 28, pp. 8639–8645CrossRefADSGoogle Scholar
  108. 108.
    A. Werner, F. Schmid, M. Müller, and K. Binder (1999) “Intrinsic” profiles and capillary waves at homopolymer interfaces: A Monte Carlo study. Phys. Rev. E 59, pp. 728–738CrossRefADSGoogle Scholar
  109. 109.
    M. Müller (2006) Soft Matter vol. 1, Chap. 3, pp. 179–283 edited by G. Gompper and M. Schick, Wiley-VCH, WeinheimGoogle Scholar
  110. 110.
    A. N. Semenov (1996) Theory of long-range interactions in polymer systems. J. Phys. (France) II, 6, pp. 1759–1780CrossRefGoogle Scholar
  111. 111.
    A. Werner, F. Schmid, and M. Müller (1999) Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density. J. Chem. Phys. 110, pp. 5370–5379CrossRefADSGoogle Scholar
  112. 112.
    H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, pp. 662–671CrossRefADSGoogle Scholar
  113. 113.
    C. Jarzynski (2001) How does a system respond when driven away from thermal equilibrium? Proc. Nat. Acad. Sci. 98, pp. 3636–3638CrossRefADSGoogle Scholar
  114. 114.
    H.C. Öttinger (2005) Beyond Equilibrium Thermodynamics. Wiley Interscience, New JerseyCrossRefGoogle Scholar
  115. 115.
    J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Muller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries (2000) Bridging the gap between atomistic and coarse-grained models of polymers: Status and perspectives. Adv. Polym. Sci. 152, pp. 41–156CrossRefGoogle Scholar
  116. 116.
    J. C. Shelley, M. Y. Shelley, R. C. Reeder, S. Bandyopadhyay, P. B. Moore, and M. L. Klein (2001) Simulations of phospholipids using a coarse grain model. J. Phys. Chem. B 105, pp. 9785–9752CrossRefGoogle Scholar
  117. 117.
    M. Müller, K. Katsov, and M. Schick (2003) Coarse-grained models and collective phenomena in membranes: Computer simulation of membrane fusion. J. Polym. Sci. B 41, pp. 1441–1450CrossRefGoogle Scholar
  118. 118.
    S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein (2004) Coarse grain models and the computer simulation of soft materials. J. Phys.: Condens. Matter 16, pp. R481–R512CrossRefADSGoogle Scholar
  119. 119.
    F. Müller-Plathe (2002) Chem. Phys. Chem. 3, p. 754Google Scholar
  120. 120.
    R. Faller, H. Schmitz, O. Biermann and F. Müller-Plathe (1999) Molecular mobility in cyclic hydrocarbons: A simulation study. J. Comput. Chem. 20, p. 1009; ibid. (2004) Polymer 45, p. 3869Google Scholar
  121. 121.
    L. Delle Site, C. F. Abrams, A. Alavi, and K. Kremer (2002) Polymers near metal surfaces: Selective adsorption and global conformations. Phys. Rev. Lett. 89, p. 156103; M. Praprotnik, L. Delle Site, and K. Kremer (2005) J. Chem. Phys. 123, p. 224106Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. Müller
    • 1
  • J.J. de Pablo
    • 2
  1. 1.Institut für Theoretische PhysikGeorg-August- UniversitätGöttingenGermany
  2. 2.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations