Advertisement

Density Functional Theory Based Ab Initio Molecular Dynamics Using the Car-Parrinello Approach

  • R. Vuilleumier
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

Abstract

Ab initio Molecular Dynamics (MD) on the contrary to empirical force field Molecular Dynamics simulations employs an electronic structure calculation at each time-step of the dynamics to determine the forces on the nuclei. This allows for the simulation of materials in a broad range of situations, including during chemical reactions, while chemical bonds are broken or formed. The last few years, use of ab initio MD has spread very rapidly to many fields and is now used by many groups. At the same time many new developments have been pursued including, e.g., the calculation of electronic properties. Ab initio MD is also an integrated part of a new range of techniques to bridge length and time scales: QM/MM, transition path sampling, metadynamics etc. many of whose are discussed in this book.

Keywords

Density Functional Theory Local Density Approximation External Potential Periodic Boundary Condition Generalize Gradient Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Frenkel and B. Smit (2001) Understanding Molecular Simulation. Academic Press, LondonGoogle Scholar
  2. 2.
    R. Car and M. Parrinello (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 55, p. 2471ADSCrossRefGoogle Scholar
  3. 3.
    A. Curioni, M. Sprik, W. Andreoni, H. Schiffer, J. Hutter, and M. Parrinello (1997) Density functional theory-based molecular dynamics simulation of acidcatalyzed chemical reactions in liquid trioxane. J. Am. Chem. Soc. 119, p. 7218CrossRefGoogle Scholar
  4. 4.
    E. J. Meijer and M. Sprik (1998) A Density Functional Study of the Addition of Water to SO3 in the Gas Phase and in Aqueous Solution. J. Phys. Chem. A 102, p. 2893CrossRefGoogle Scholar
  5. 5.
    E. J. Meijer and M. Sprik (1998) Ab Initio Molecular Dynamics Study of the Addition Reaction of Water to Formaldehyde in Sulfuric Acid Solution. J. Am. Soc. Chem. 120, p. 6345CrossRefGoogle Scholar
  6. 6.
    M. Sprik (2000) Computation of the pK of liquid water using coordination constraints. Chem. Phys. 258, p. 139CrossRefADSGoogle Scholar
  7. 7.
    K. Doclo and U. Rothlisberger (2000) Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study. J. Phys. Chem. A 104, p. 6464CrossRefGoogle Scholar
  8. 8.
    P. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello (2001) Autoionization in Liquid Water. Science 291, p. 2121ADSCrossRefGoogle Scholar
  9. 9.
    B. Ensing, E. J. Meijer, P. E. Blochl, and E. J. Baerends (2001) Solvation effects on the SN2 Reaction between CH3Cl and Cl- in Water. J. Phys. Chem. A. 105, p. 3300CrossRefGoogle Scholar
  10. 10.
    N. L. Doltsinis and M. Sprik (2003) Theoretical pKa estimates for solvated P(OH)5 from coordination constrained Car-Parrinello dynamics. Phys. Chem. Chem. Phys. 5, p. 2612CrossRefGoogle Scholar
  11. 11.
    J. Blumberger, L. Bernasconi, I. Tavernelli, R. Vuilleumier, and M. Sprik (2004) Electronic structure and solvation of copper and silver ions: A theoretical picture of a model aqueous redox reaction. J. Am. Chem. Soc. 126, p. 3928CrossRefGoogle Scholar
  12. 12.
    J. Blumberger and M. Sprik (2004) Free energy of oxidation of metal aqua Ions by an enforced change of Coordination. J. Phys. Chem. B. 108, p. 6529CrossRefGoogle Scholar
  13. 13.
    P. R. L. Markwick, N. L. Doltsinis, and D. Marx (2005) Targeted Car-Parrinello molecular dynamics: Elucidating double proton transfer in formic acid dimer. J. Chem. Phys. 122, 054112CrossRefADSGoogle Scholar
  14. 14.
    Y. Tateyama, J. Blumberger, M. Sprik, and I. Tavernelli (2005) Density functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes. J. Chem. Phys. 122, p. 234505CrossRefADSGoogle Scholar
  15. 15.
    F. Zipoli, M. Bernasconi, and A. Laio (2005) Ab initio simulations of Lewisacid- catalyzed hydrosilylation of alkynes. Chem. Phys. Chem. 6, p. 1772Google Scholar
  16. 16.
    A. D. Vita, G. Galli, A. Canning, and R. Car (1996) A microscopic model for surface-induced diamond-to-graphite transitions. Nature 379, p. 523ADSCrossRefGoogle Scholar
  17. 17.
    C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi, and M. Parrinello (1999) Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, p. 44ADSCrossRefGoogle Scholar
  18. 18.
    R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura (2000) Ab initio Simulation of Phase Transitions and Dissociation of H2S at High Pressure. Phys. Rev. Lett. 85, p. 1254ADSCrossRefGoogle Scholar
  19. 19.
    D. D. Klug, R. Rousseau, K. Uehara, M. Bernasconi, Y. L. Page, and J. S. Tse (2001) Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys. Rev. B 63, p. 104106ADSCrossRefGoogle Scholar
  20. 20.
    C. J. Wu, J. N. Glosli, G. Galli, and F. H. Ree (2002) Liquid-liquid phase transition in elemental carbon: A first-principles investigation. Phys. Rev. Lett. 89, p. 135701ADSCrossRefGoogle Scholar
  21. 21.
    L. M. Ghiringhelli and E. J. Meijer (2005) Phosphorus: First principle simulation of a liquid–liquid phase transition. J. Chem. Phys. 122, p. 184510ADSCrossRefGoogle Scholar
  22. 22.
    F. Zipoli, M. Bernasconi, and R. Martoňák (2004) Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited. Eur. Phys. J. B 39, p. 41ADSCrossRefGoogle Scholar
  23. 23.
    M. McGrath, J. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, M. Sprik, J. Hutter, F. Mohamed, M. Krack, and M. Parrinello (2005) Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles. Comp. Phys. Comm. 169, p. 289CrossRefADSGoogle Scholar
  24. 24.
    R. Martoňák, A. Laio, M. Bernasconi, C. Ceriani, P. Raiteri, F. Zipoli, and M. Parrinello (2005) Simulation of structural phase transitions by metadynamics. Zeitschrift für Kristallographie 220, p. 489CrossRefGoogle Scholar
  25. 25.
    T. Ikeda, M. Sprik, K. Terakura, and M. Parrinello (1998) Pressure effects on Hydrogen Bonding in the Disordered Phase of Solid Hbr. Phys. Rev. Lett. 81, p. 4416ADSCrossRefGoogle Scholar
  26. 26.
    T. Ikeda, M. Sprik, K. Terakura, and M. Parrinello (2000) Hydrogen elimination and solid-state reaction in hydrogen-bonded systems under pressure: The case of Hbr. J. Phys. Chem. B 104, p. 11801CrossRefGoogle Scholar
  27. 27.
    M. Benoit, A. H. Romero, and D. Marx (2002) Reassigning Hydrogen-Bond Centering in Dense Ice. Phys. Rev. Lett. 89, p. 145501ADSCrossRefGoogle Scholar
  28. 28.
    A. Pasquarello and R. Resta (2003) Dynamical monopoles and dipoles in a condensed molecular system: The case of liquid water. Phys. Rev. B 68, p. 174302ADSCrossRefGoogle Scholar
  29. 29.
    M. Sharma, R. Resta, and R. Car (2005) Intermolecular Dynamical Charge Fluctuations in Water: A Signature of the H-Bond Network. Phys. Rev. Lett. 95, p. 187401ADSCrossRefGoogle Scholar
  30. 30.
    M. McGrath, J. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed, and M. Krack (2005) First Principles: Application to Liquid Water at Ambient Conditions. Chem. Phys. Chem. 6, p. 1894Google Scholar
  31. 31.
    K. Laasonen, M. Sprik, M. Parrinello, and R. Car (1993) Ab initio liquid water. J. Chem. Phys. 99, p. 9080ADSCrossRefGoogle Scholar
  32. 32.
    J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli (2004) Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J. Chem. Phys. 120, p. 300ADSCrossRefGoogle Scholar
  33. 33.
    E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli (2004) Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. J. Chem. Phys. 121, p. 5400ADSCrossRefGoogle Scholar
  34. 34.
    I. Bakó, J. Hutter, and G. P´link´s (2002) Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. J. Chem. Phys. 117, p. 9838ADSCrossRefGoogle Scholar
  35. 35.
    M. Cavalleri, M. Odelius, A. Nilsson, and L. G. M. Pettersson (2004) X-ray absorption spectra of water within a plane-wave Car-Parrinello molecular dynamics framework. J. Chem. Phys. 121, p. 10065ADSCrossRefGoogle Scholar
  36. 36.
    M. Allesch, E. Schwegler, F. Gygi, and G. Galli (2004) A first principles simulation of rigid water. J. Chem. Phys. 120, p. 5192ADSCrossRefGoogle Scholar
  37. 37.
    P. H.-L. Sit and N. Marzari (2005) Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics. J. Chem. Phys. 122, p. 204510ADSCrossRefGoogle Scholar
  38. 38.
    I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack, and M. Parrinello (2004) Liquid water from first principles, investigation of different sampling approaches. J. Phys. Chem. B 108, p. 12990CrossRefGoogle Scholar
  39. 39.
    J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello (2005) The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J. Chem. Phys. 122, 014515ADSCrossRefGoogle Scholar
  40. 40.
    D. Marx, J. Hutter, and M. Parrinello (1995) Density functional study of small aqueous Be2+ clusters. Chem. Phys. Lett. 241, p. 457ADSCrossRefGoogle Scholar
  41. 41.
    M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello (1995) Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water. J. Phys. Chem. 99, p. 5749CrossRefGoogle Scholar
  42. 42.
    D. Marx, M. Sprik, and M. Parrinello (1997) Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 273, p. 360CrossRefADSGoogle Scholar
  43. 43.
    D. Marx, M. Tuckerman, J. Hutter, and M. Parrinello (1999) The nature of the hydrated excess proton in water. Nature 397, p. 601ADSCrossRefGoogle Scholar
  44. 44.
    M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello (1995) Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103, p. 150ADSCrossRefGoogle Scholar
  45. 45.
    L. M. Ramaniah, M. Bernasconi, and M. Parrinello (1999) Ab initio molecular dynamics simulation of K+ solvation in water. J. Chem. Phys. 111, p. 1587ADSCrossRefGoogle Scholar
  46. 46.
    C. J. Mundy, J. Hutter, and M. Parrinello (2000) Microsolvation and chemical reactivity of sodium and water clusters. J. Am. Chem. Soc. 122, p. 4837CrossRefGoogle Scholar
  47. 47.
    R. Vuilleumier and M. Sprik (2001) Electronic properties of hard and soft ions in solution: Aqueous Na+ and Ag+ compared. J. Chem. Phys. 115, p. 3454ADSCrossRefGoogle Scholar
  48. 48.
    Z.-P. Liu, P. Hu, and A. Alavi (2001) Mechanism for the high reactivity of CO oxidation on a ruthenium-oxide. J. Chem. Phys. 114, p. 5956ADSCrossRefGoogle Scholar
  49. 49.
    T. S. van Erp and E. J. Meijer (2003) Ab initio molecular dynamics study of aqueous solvation of ethanol and ethylene. J. Chem. Phys. 118, p. 8831ADSCrossRefGoogle Scholar
  50. 50.
    J. M. Heuft and E. J. Meijer (2003) Density functional theory based molecular dynamics study of aqueous chloride solvation. J. Chem. Phys. 119, p. 11788ADSCrossRefGoogle Scholar
  51. 51.
    M. E. Tuckerman, D. Marx, and M. Parrinello (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, p. 925ADSCrossRefGoogle Scholar
  52. 52.
    B. Kirchner, J. Stubbs, and D. Marx (2002) Fast Anomalous diffusion of Small Hydrophobic Species in Water. Phys. Rev. Lett. 89, p. 215901ADSCrossRefGoogle Scholar
  53. 53.
    B. Kirchner and J. Hutter (2002) The structure of a DMSO/Water mixture from Car-Parrinello simulations. Chem. Phys. Lett. 364, p. 497CrossRefADSGoogle Scholar
  54. 54.
    T. Ikeda, M. Hirata, and T. Kimura (2005) Hydration of Y3+ ion: A Car-Parrinello molecular dynamics study. J. Chem. Phys. 122, 024510CrossRefADSGoogle Scholar
  55. 55.
    S. Izvekov and G. A. Voth (2005) Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited. J. Chem. Phys. 123, 044505CrossRefADSGoogle Scholar
  56. 56.
    M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, and C. C. Liew (2003) First-Principles Molecular-Dynamics Simulations of a Hydrated Electron in Normal and Supercritical Water. Phys. Rev. Lett. 90, p. 226403ADSCrossRefGoogle Scholar
  57. 57.
    C. Nicolas, R. Spezia, A. Boutin, and R. Vuilleumier (2003) Molecular Dynamics simulations of a silver atom in water: dipolar excitonic state evidence. Phys. Rev. Lett. 91, p. 208304ADSCrossRefGoogle Scholar
  58. 58.
    M.-P. Gaigeot and M. Sprik (2004) Ab initio molecular dynamics study of uracil in aqueous solution. J. Phys. Chem. B 108, p. 7458CrossRefGoogle Scholar
  59. 59.
    L. Bernasconi, M. Sprik, and J. Hutter (2004) Hartree-Fock exchange in time dependent density functional theory: Application to charge transfer excitations in solvated molecular systems. Chem. Phys. Lett. 394, p. 141CrossRefADSGoogle Scholar
  60. 60.
    F. C. Lightstone, E. Schwegler, M. Allesch, F. Gygi, and G. Galli (2005) A first-principles molecular dynamics study of calcium in water. Chem. Phys. Chem 6, p. 1745Google Scholar
  61. 61.
    J. M. Heuft and E. J. Meijer (2005) Density functional theory based molecular dynamics study of aqueous fluoride solvation. J. Chem. Phys. 122, 094501CrossRefADSGoogle Scholar
  62. 62.
    J. M. Heuft and E. J. Meijer (2005) Density functional theory based molecular dynamics study of aqueous iodide solvation. J. Chem. Phys. 123, 094506CrossRefADSGoogle Scholar
  63. 63.
    J. VandeVondele and M. Sprik (2005) A molecular dynamics study of the hydroxyl radical in solution applying self-interaction corrected density functional methods. Phys. Chem. Chem. Phys. 7, p. 1363CrossRefGoogle Scholar
  64. 64.
    P. Hunt and M. Sprik (2005) On the position of the highest molecular orbital in aqueous solutions of simple ions. Chem. Phys. Chem. 6, p. 1805Google Scholar
  65. 65.
    J. A. Morrone and M. E. Tuckerman (2002) Ab initio molecular dynamics study of proton mobility in liquid methanol. J. Chem. Phys. 117, p. 4403ADSCrossRefGoogle Scholar
  66. 66.
    J.-W. Handgraaf, E. J. Meijer, and M.-P. Gaigeot (2004) Density-functional theory-based molecular simulation study of liquid methanol. J. Chem. Phys. 121, p. 10111ADSCrossRefGoogle Scholar
  67. 67.
    J. VandeVondele, R. Lynden-Bell, E. J. Meijer, and M. Sprik (2006) Density functional theory study of tetrathiafulvalene and thianthrene in acetonitrile: structure, dynamics and redox properties. J. Phys. Chem. B 110, p. 3614CrossRefGoogle Scholar
  68. 68.
    A. Pasquarello, K. Laasonen, R. Car, C. Lee, and D. Vanderbilt (1992) Ab initio molecular dynamics for d-electron systems: Liquid copper at 1500 K. Phys. Rev. Lett. 69, p. 1982ADSCrossRefGoogle Scholar
  69. 69.
    J. Sarnthein, A. Pasquarello, and R. Car (1995) Structural and Electronic Properties of Liquid and Amorphous SiO2: An Ab Initio Molecular Dynamics Study. Phys. Rev. Lett. 74, p. 4682ADSCrossRefGoogle Scholar
  70. 70.
    P. Silvestrelli, A. Alavi, and M. Parrinello (1997) Electronic conductivity calculation in ab-initio simulations of metals. Application to liquid sodium. Phys. Rev. B 55, p. 15515ADSCrossRefGoogle Scholar
  71. 71.
    M. Pohlmann, M. Benoit, and W. Kob (2004) First-principles molecular dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism. Phys. Rev. B 70, p. 184209ADSCrossRefGoogle Scholar
  72. 72.
    M. Popolo, R. M. Lynden-Bell, and J. Kohanoff (2005) Ab Initio simulation of a room temperature ionic liquid. J. Phys. Chem. B 109, p. 5895CrossRefGoogle Scholar
  73. 73.
    F. Haase, J. Sauer, and J. Hutter (1997) Ab Initio Molecular Dynamics Simulation of Methanol Adsorbed in Chabazite. Chem. Phys. Lett. 266, p. 397CrossRefADSGoogle Scholar
  74. 74.
    A. Alavi, P. Hu, T. Deutsch, P. L. Silvestrelli, and J. Hutter (1998) CO Oxidation on Pt(111): An Ab Initio Density Functional Theory Study. Phys. Rev. Lett. 80, p. 3650ADSCrossRefGoogle Scholar
  75. 75.
    A. Y. Lozovoi, A. Alavi, and M. Finnis (2000) Surface stoichiometry and the initial oxidation of NiAl(110). Phys. Rev. Lett. 85, p. 610ADSCrossRefGoogle Scholar
  76. 76.
    P. Hu and A. Alavi (2001) Insight into electron-mediated reaction mechanisms: Catalytic CO oxidation on a ruthenium surface. J. Chem. Phys. 114, p. 8113ADSCrossRefGoogle Scholar
  77. 77.
    E. S. Boek and M. Sprik (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. J. Phys. Chem. B 107, p. 3251CrossRefGoogle Scholar
  78. 78.
    X. Wu, A. Selloni, and S. K. Nayak (2004) First principles study of CO oxidation on TiO2 (110): The role of surface oxygen vacancies. J. Chem. Phys. 120, p. 4512ADSCrossRefGoogle Scholar
  79. 79.
    M. W. Finnis, A. Lozovoi, and A. Alavi (2005) Ab initio calculations on the oxidation of NiAl, Annual Reviews of Materials Research 35, pp. 167–207CrossRefADSGoogle Scholar
  80. 80.
    M. Benoit, D. Marx, and M. Parrinello (1998) Tunnelling and zero-point motion in high-pressure ic. Nature 392, p. 258ADSCrossRefGoogle Scholar
  81. 81.
    M. Benoit, D. Marx, and M. Parrinello (1999) The role of quantum effects and ionic defects in high-density ice. Solid State Ionics 125, p. 23CrossRefGoogle Scholar
  82. 82.
    A. Alavi, R. Lynden-Bell, and R. Brown (1999) Displacement and distortion of the ammonium ion in reorientational transition states of ammonium chloride and ammonium fluoride. J. Chem. Phys. 110, p. 5861ADSCrossRefGoogle Scholar
  83. 83.
    A. Alavi, R. Lynden-Bell, and R. Brown (2000) Pathway for reorientation in ammonium fluoride. Chem. Phys. Lett. 320, p. 487CrossRefADSGoogle Scholar
  84. 84.
    S. Ispas, M. Benoit, P. Jund, and R. Jullien (2001) Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64, p. 214206ADSCrossRefGoogle Scholar
  85. 85.
    S. Ispas, M. Benoit, P. Jund, and R. Jullien (2002) Structural properties of glassy and liquid sodium tetrasilicate: comparison between ab initio and classical molecular dynamics simulations. Journal of Non-Crystalline Solids 307, p. 946CrossRefADSGoogle Scholar
  86. 86.
    J. Sarnthein, A. Pasquarello, and R. Car (1995) Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt. Phys. Rev. B 52, p. 12690ADSCrossRefGoogle Scholar
  87. 87.
    A. Pasquarello and R. Car (1997) Dynamical Charge Tensors and Infrared Spectrum of Amorphous SiO2. Phys. Rev. Lett. 79, p. 1766ADSCrossRefGoogle Scholar
  88. 88.
    P. Carloni and U. Rothlisberger (2001) Simulations of Enzymatic Systems: Perspectives from Car-Parrinello Molecular Dynamics Simulations. In Theoretical Biochemistry – Processes and Properties of Biological Systems, ed. L. Eriksson Elsevier Science, pp. 215–251Google Scholar
  89. 89.
    P. Carloni, U. Rothlisberger, and M. Parrinello (2002) The Role and Perspective of Ab-initio Molecular Dynamics in the Study of Biological Systems. Acc. Chem. Res. 35, p. 455CrossRefGoogle Scholar
  90. 90.
    M. Sulpizi, G. Folkers, U. Rothlisberger, P. Carloni, and L. Scapozza (2002) Applications of Density Functional Theory-Based Methods in Medicinal Chemistry. Quant. Struct.-Act. Rel. 21, p. 173CrossRefGoogle Scholar
  91. 91.
    U. Röhrig, L. Guidoni, and U. Rothlisberger (2002) Early Steps of the Intramolecular Signal Transduction in Rhodopsin Explored by Molecular Dynamics Simulations. Biochemistry 41, p. 10799CrossRefGoogle Scholar
  92. 92.
    M. Colombo, L. Guidoni, A. Laio, A. Magistrato, P. Maurer, S. Piana, U. Röhrig, K. Spiegel, M. Sulpizi, J. VandeVondele, M. Zumstein, and U. Rothlisberger (2002) Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions. CHIMIA 56, p. 13CrossRefGoogle Scholar
  93. 93.
    A. Magistrato, W. DeGrado, U. Rothlisberger, and M. Klein (2003) Structural and Dynamical Characterization of Dizinc DF1, a Biomimetic Compound of Diiron Proteins via ab initio and Hybrid (QM/MM) Molecular Dynamics. J. Phys. Chem. B 107, p. 4182CrossRefGoogle Scholar
  94. 94.
    K. Spiegel, U. Rothlisberger, and P. Carloni (2004) Cisplatin Binding to DNA Oligomers from Hybrid Car-Parrinello Molecular Dynamics Simulations. J. Phys. Chem. B 108, p. 2699CrossRefGoogle Scholar
  95. 95.
    L. Guidoni, K. Spiegel, M. Zumstein, and U. Rothlisberger (2004) Green Oxidation Catalysts: Computational Design of High Efficiency Models of Galactose Oxidase. Angew. Chem. 116, p. 3348CrossRefGoogle Scholar
  96. 96.
    F. L. Gervasio, A. Laio, M. Parrinello, and M. Boero (2005) Charge Localization in DNA Fibers. Phys. Rev. Lett. 94, p. 158103ADSCrossRefGoogle Scholar
  97. 97.
    CPMD, Copyright IBM Corp 1990–2001, Copyright MPI für Festkörperforschung Stuttgart (1997–2004)Google Scholar
  98. 98.
    J. Hutter and M. Iannuzzi (2005) CPMD: Car-Parrinello molecular dynamics. Z. für Kristallographie 220, p. 549CrossRefGoogle Scholar
  99. 99.
    S. Baroni, A. D. Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, and A. Kokalj, http://www.pwscf.org/Google Scholar
  100. 100.
    G. Kresse and J. Furthmüller (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, p. 11169ADSCrossRefGoogle Scholar
  101. 101.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, p. 1045ADSCrossRefGoogle Scholar
  102. 102.
    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie 220, p. 567CrossRefGoogle Scholar
  103. 103.
    J. N. Michel Bockstedte, A. Kley, and M. Scheffler (1997) Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. Comput. Phys. Comm. 107, p. 187zbMATHADSCrossRefGoogle Scholar
  104. 104.
    Nwchem, developed and distributed by Pacic Northwest National Laboratory, USAGoogle Scholar
  105. 105.
    X. Gonze (2005) A brief introduction to the ABINIT software packag. Zeitschrift für Kristallographie 220, p. 558CrossRefGoogle Scholar
  106. 106.
    R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, and C. M. Zicovich-Wilsonan (2005) CRYSTAL: A computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift für Kristallographie 220, p. 571CrossRefGoogle Scholar
  107. 107.
    S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A. Pasquarello, and S. Baroni (2005) First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeitschrift für Kristallographie 220, p. 574CrossRefGoogle Scholar
  108. 108.
    M. E. Tuckerman, D. A. Yarne, S. O. Samuelson, A. L. Hughes, and G. J. Martyna (2000) Exploiting multiple levels of parallelism in molecular dynamics based calculations via modern techniques and software paradigms on distributed memory computers. Comp. Phys. Comm. 128, p. 333zbMATHADSCrossRefGoogle Scholar
  109. 109.
    The cp2k developers group, http://cp2k.berlios.de/ (2004)Google Scholar
  110. 110.
    J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005) Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Comm. 167, p. 103CrossRefADSGoogle Scholar
  111. 111.
    D. Marx and J. Hutter (2000) Ab initio molecular dynamics: Theory and implementation; Modern Methods and Algorithms of Quantum Chemistry. In NIC Series, ed. J. Grotendorst Forschungszentrum Jülich 1Google Scholar
  112. 112.
    M. Tuckerman and G. Martyna (2000) Understanding modern molecular dynamics methods: Techniques and Applications. J. Phys. Chem. 104, p. 159Google Scholar
  113. 113.
    D. Sebastiani and U. Rothlisberger (2003) Advances in Density Functional Based Modelling Techniques: Recent Extensions of the Car-Parrinello Approach. In Medicinal Quantum Chemistry, eds. P. Carloni and F. Alber Wiley-VCH, Weinheim. Methods and Principles in Medicinal Chemistry, pp. 5–40Google Scholar
  114. 114.
    J. Hutter (2004) Large Scale Density Functional Calculations. In Multiscale Modelling and Simulation, eds. S. Attinger and P. Koumoutsakos Springer, Heidelberg. Lecture Notes in Computational Science and Engineering, p. 39Google Scholar
  115. 115.
    A. Messiah (2000) Quantum Mechanics, 2 volumes Bound as One. Chap. XVIII, Dover, New YorkGoogle Scholar
  116. 116.
    R. P. Feynman (1939) Forces in Molecules. Phys. Rev. 56, p. 340zbMATHADSCrossRefGoogle Scholar
  117. 117.
    L. Verlet (1967) Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 159, p. 98ADSCrossRefGoogle Scholar
  118. 118.
    D. M. Ceperley and B. J. Alder (1980) Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 45, p. 566ADSCrossRefGoogle Scholar
  119. 119.
    C. Pierleoni, D. M. Ceperley, and M. Holzmann (2004) Coupled Electron-Ion Monte Carlo Calculations of Dense Metallic Hydrogen. Phys. Rev. Lett. 93, p. 146402ADSCrossRefGoogle Scholar
  120. 120.
    R. M. Dreizler and E. K. U. Gross (1990) Density Functional Theory. Springer-Verlag, Berlin HeidelbergzbMATHGoogle Scholar
  121. 121.
    R. G. Parr and Y. Weitao (1994) Density-Functional Theory of Atoms and Molecules. Oxford University PressGoogle Scholar
  122. 122.
    R. M. Martin (2004) Electronic Structure : Basic Theory and Practical Methods. Cambridge University PressGoogle Scholar
  123. 123.
    P. Hohenberg and W. Kohn (1964) Inhomogeneous Electron Gas. Phys. Rev. 136, p. B864ADSMathSciNetCrossRefGoogle Scholar
  124. 124.
    M. Levy (1979) Universal Variational Functionals of Electron Densities, First-Order Density Matrices, and Natural Spin-Orbitals and Solution of the v-Representability Problem. Proc. Nat. Acad. Science 76, p. 6062ADSCrossRefGoogle Scholar
  125. 125.
    W. Kohn and L. J. Sham (1965) Self-Consistent Equations Including Exchange and Correlation effects. Phys. Rev. 140, p. A1133ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    S. H. Vosko, L. Wilk, and M. Nusair (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, p. 1200ADSCrossRefGoogle Scholar
  127. 127.
    J. P. Perdew and Y. Wang (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, p. 13244ADSCrossRefGoogle Scholar
  128. 128.
    J. P. Perdew and A. Zunger (1981) Self-interaction correction to density functional approximations for many-electron systems. Phys. Rev. B 23, p. 5048ADSCrossRefGoogle Scholar
  129. 129.
    S. Goedecker, M. Teter, and J. Hutter (1996) Seperable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 54, p. 1703ADSCrossRefGoogle Scholar
  130. 130.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, p. 3865ADSCrossRefGoogle Scholar
  131. 131.
    J. P. Perdew, J. A. Chevary, S. H. Vosko, Koblar, A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, p. 6671ADSCrossRefGoogle Scholar
  132. 132.
    J. P. Perdew (1991) in Electronic Structure of Solids ‘91, eds. P. Ziesche and H. Eschrig Akademie Verlag, Berlin, p. 11Google Scholar
  133. 133.
    A. D. Becke (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, p. 3098ADSCrossRefGoogle Scholar
  134. 134.
    C. Lee, W. Yang, and R. G. Parr (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, p. 785ADSCrossRefGoogle Scholar
  135. 135.
    F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy (1998) Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 109, p. 6264ADSCrossRefGoogle Scholar
  136. 136.
    A. D. Boese and N. C. Handy (2001) A new parametrization of exchange correlation generalized gradient approximation functionals. J. Chem. Phys. 114, p. 5497ADSCrossRefGoogle Scholar
  137. 137.
    A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik (2000) New generalized gradient approximation functionals. J. Chem. Phys. 112, p. 1670ADSCrossRefGoogle Scholar
  138. 138.
    A. D. Corso, A. Pasquarello, A. Baldereschi, and R. Car (1996) Generalizedgradient approximations to density-functional theory: A comparative study for atoms and solids. Phys. Rev. B 53, p. 1180ADSCrossRefGoogle Scholar
  139. 139.
    M. Sprik, J. Hutter, and M. Parrinello (1996) Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient-corrected density functionals. J. Chem. Phys. 105, p. 1142ADSCrossRefGoogle Scholar
  140. 140.
    A. Becke (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104, p. 1040ADSCrossRefGoogle Scholar
  141. 141.
    M. d’Avezac, M. Calandra, and F. Mauri (2005) Density functional theory description of hole-trapping in SiO2 : A self-interaction-corrected approach. Phys. Rev. B 71, p. 205210ADSCrossRefGoogle Scholar
  142. 142.
    I. Ciofini, C. Adamo, and H. Chermette (2005) Effect of self-interaction error in the evaluation of the bond length alternation in trans-polyacetylene using density-functional theory. J. Chem. Phys. 123, p. 121102ADSCrossRefGoogle Scholar
  143. 143.
    W. Pollard and R. Friesner (1993) Efficient Fock matrix diagonalization by a Krylov-space method. J. Chem. Phys. 99, p. 6742ADSCrossRefGoogle Scholar
  144. 144.
    J. Cullum and R. A. Willoughby (1985) Lanczos algorithms for large symmetric eigenvalue computations, 1 : Theory of Progress in Scientific Computing. Birkhauser, Boston, 3 ednGoogle Scholar
  145. 145.
    A. Alavi, J. Kohanoff, M. Parrinello, and D. Frenkel (1994) Ab Initio Molecular Dynamics with Excited Electrons. Phys. Rev. Lett. 73, p. 2599ADSCrossRefGoogle Scholar
  146. 146.
    D. G. Anderson (1965) Iterative Procedures for Nonlinear Integral Equations. J. Assoc. Comput. Mach. 12, p. 547zbMATHMathSciNetGoogle Scholar
  147. 147.
    M. P. Teter, M. C. Payne, and D. C. Allen (1989) Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40, p. 12255ADSCrossRefGoogle Scholar
  148. 148.
    P. Pulay (1980) Convergence acceleration of iterative sequences the case of scf iteration. Chem. Phys. Lett. 73, p. 393ADSCrossRefGoogle Scholar
  149. 149.
    C. Csaszar and P. Pulay (1984) Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struc. 114, p. 31CrossRefADSGoogle Scholar
  150. 150.
    J. Hutter, H. P. Luthi, and M. Parrinello (1994) Electronic Structure Optimisation in Plane-Wave-Based Density Functional Calculations by Direct Inversion in the Iterative Subspace. Comput. Mat. Sci. 2, p. 244CrossRefGoogle Scholar
  151. 151.
    R. Spezia, C. Nicolas, F.-X. Coudert, P. Archirel, R. Vuilleumier, and A. Boutin (2004) Reactivity of an excess electron with monovalent cations in bulk water by mixed quantum classical molecular dynamics simulations. Mol. Sim. 30, p. 749zbMATHCrossRefGoogle Scholar
  152. 152.
    R. W. Hockney (1970) The potential calculation and some applications. Methods Comput. Phys. 9, p. 136Google Scholar
  153. 153.
    G. J. Martyna and M. E. Tuckerman (1999) A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys. 110, p. 2810ADSCrossRefGoogle Scholar
  154. 154.
    A. Filippetti, D. Vanderbilt, W. Zhong, Y. Cai, and G. B. Bachelet (1995) Chemical hardness, linear response, and pseudopotential transferability. Phys. Rev. B 52, p. 11793ADSCrossRefGoogle Scholar
  155. 155.
    D. R. Hamann, M. Schlüter, and C. Chiang (1979) Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 43, p. 1494ADSCrossRefGoogle Scholar
  156. 156.
    G. B. Bachelet, D. R. Hamann, and M. Schlüter (1982) Pseudopotentials that work: From H to Pu. Phys. Rev. B 26, p. 4199ADSCrossRefGoogle Scholar
  157. 157.
    N. Troullier and J. L. Martins (1991) Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, p. 1993ADSCrossRefGoogle Scholar
  158. 158.
    L. Kleinman and D. M. Bylander (1982) Efficacious Form for Model Pseudopotentials. Phys. Rev. Lett. 48, p. 1425ADSCrossRefGoogle Scholar
  159. 159.
    P. E. Blöchl (1990) Generalized separable potentials for electronic-structure calculations. Phys. Rev. B 41, p. 5414ADSCrossRefGoogle Scholar
  160. 160.
    C. Hartwigsen, S. Goedecker, and J. Hutter (1998) Relativistic separable dualspace Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, p. 3641ADSCrossRefGoogle Scholar
  161. 161.
    O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani (2005) Variational optimization of effective atom centered potentials for molecular properties. J. Chem. Phys. 122, 014113ADSCrossRefGoogle Scholar
  162. 162.
    O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani (2004) Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory. Phys. Rev. Lett. 93, p. 153004ADSCrossRefGoogle Scholar
  163. 163.
    D. Vanderbilt (1985) Optimally smooth norm-conserving pseudopotentials. Phys. Rev. B 32, p. 8412ADSCrossRefGoogle Scholar
  164. 164.
    D. Vanderbilt (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, p. 7892ADSCrossRefGoogle Scholar
  165. 165.
    K. Laasonen, R. Car, C. Lee, and D. Vanderbilt (1991) Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43, p. 6796ADSCrossRefGoogle Scholar
  166. 166.
    K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt (1993) Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 47, p. 10142ADSCrossRefGoogle Scholar
  167. 167.
    J. Hutter, M. E. Tuckerman, and M. Parrinello (1995) Integrating the Car-Parrinello equations III. J. Chem. Phys. 102, p. 859ADSCrossRefGoogle Scholar
  168. 168.
    M. Iannuzzi, T. Chassaing, T. Wallman, and J. Hutter (2005) Ground and Excited State Density Functional Calculations with the Gaussian and Augmented-Plane-Wave Method. Chimia 59, p. 499CrossRefGoogle Scholar
  169. 169.
    S. Nosé (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys 81, p. 511ADSCrossRefGoogle Scholar
  170. 170.
    W. G. Hoover (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, p. 1695ADSCrossRefGoogle Scholar
  171. 171.
    J. B. Abrams, M. E. Tuckerman, and G. J. Martyna, Equilibrium statistical mechanics, non-hamiltonian molecular dynamics, and novel applications from resonance-free timesteps to adiabatic free energy dynamic. Lect. Notes in Phys. 703, pp. 139–192Google Scholar
  172. 172.
    J. VandeVondele and J. Hutter (2003) An Efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, p. 4365ADSCrossRefGoogle Scholar
  173. 173.
    M. E. Tuckerman, J. Hutter, and M. Parrinello (1994) Integrating the Car-Parrinello equations I. J. Chem. Phys. 101, p. 1302ADSCrossRefGoogle Scholar
  174. 174.
    M. E. Tuckerman, J. Hutter, and M. Parrinello (1994) Integrating the Car-Parrinello equations II. J. Chem. Phys. 101, p. 1316ADSCrossRefGoogle Scholar
  175. 175.
    J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen (1977) Numerical integration of the Cartesian equation of motion of a system with constraints: molecular dynamics of N-alkanes. J. of Computational Physics 23, p. 327CrossRefADSGoogle Scholar
  176. 176.
    H. C. Andersen (1983) Rattle: A velocity version of the shake algorithm for molecular dynamics calculations. J. Comp. Phys. 52, p. 24zbMATHCrossRefADSGoogle Scholar
  177. 177.
    G. J. Martyna, M. L. Klein, and M. Tuckerman (1992) Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, p. 2635ADSCrossRefGoogle Scholar
  178. 178.
    G. Pastore, E. Smargiassi, and F. Buda (1991) Theory of ab initio molecular dynamics calculations. Phys. Rev. A 44, p. 6334ADSCrossRefGoogle Scholar
  179. 179.
    F. A. Bornemann and C. Schutte (1998) A mathematical investigation of the Car-Parrinello method. Numer. Math. 78, p. 359zbMATHMathSciNetCrossRefGoogle Scholar
  180. 180.
    F. A. Bornemann and C. Schutte (1999) Adaptive accuracy control for Car-Parrinello simulations. Numer. Math. 83, p. 179zbMATHMathSciNetCrossRefGoogle Scholar
  181. 181.
    P. Tangney and S. Scandolo (2002) How well do Car-Parrinello simulations reproduce the Born-Oppenheimer surface? Theory and examples. J. Chem. Phys. 116, p. 14ADSCrossRefGoogle Scholar
  182. 182.
    O. G. Jepps, G. Ayton, and D. J. Evans (2000) Microscopic expressions for the thermodynamic temperature. Phys. Rev. E 62, p. 4757ADSCrossRefGoogle Scholar
  183. 183.
    P. Tangney (2006) On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter. J. Chem. Phys. 124, 044111CrossRefADSGoogle Scholar
  184. 184.
    M. Sprik (1991) Hydrogen bonding and the static dielectric constant in liquid water. J. Chem. Phys. 95, p. 6762ADSCrossRefGoogle Scholar
  185. 185.
    M. Sprik and M. L. Klein (1988) A polarizable model for water using distributed charge sites. J. Chem. Phys. 89, p. 7556ADSCrossRefGoogle Scholar
  186. 186.
    M. Marchi, D. Borgis, N. Levy, and P. Ballone (2001) A dielectric continuum molecular dynamics method. J. Chem. Phys. 114, p. 4377ADSCrossRefGoogle Scholar
  187. 187.
    R. Vuilleumier and D. Borgis (2000) Wavefunction quantisation of the proton motion in a H5O+ 2 dimer solvated in liquid water. Journal of Molecular Structure 552, p. 117CrossRefADSGoogle Scholar
  188. 188.
    R. Resta (1998) Quantum-Mechanical Position Operator in Extended Systems. Phys. Rev. Lett. 80, p. 1800ADSCrossRefGoogle Scholar
  189. 189.
    R. Resta and S. Sorella (1999) Electron Localization in the Insulating State. Phys. Rev. Lett. 82, p. 370ADSCrossRefGoogle Scholar
  190. 190.
    R. Resta (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, pp. 899–915ADSCrossRefGoogle Scholar
  191. 191.
    D. Vanderbilt and R. D. King-Smith (1993) Electric polarization as a bulk quantity and its relation to surface charge. Phys. Rev. B 48, p. 4442ADSCrossRefGoogle Scholar
  192. 192.
    R. D. King-Smith and D. Vanderbilt (1993) Theory of polarization of crystalline solids. Phys. Rev. B 47, p. 1651ADSCrossRefGoogle Scholar
  193. 193.
    P. L. Silvestrelli, M. Bernasconi, and M. Parrinello (1997) Ab initio infrared spectrum of liquid water. Chem. Phys. Lett. 277, p. 478CrossRefADSGoogle Scholar
  194. 194.
    M.-P. Gaigeot and M. Sprik (2003) Ab initio molecular dynamics computation of the infrared spectrum of aqueous uracil. J. Phys. Chem. B 107, p. 10344CrossRefGoogle Scholar
  195. 195.
    M. Gaigeot, R. Vuilleumier, M. Sprik, and D. Borgis (2005) Infrared spectroscopy of N-methyl-acetamide revisited by ab initio molecular dynamics simulations. J. Chem. Theory Comput. 1, p. 772CrossRefGoogle Scholar
  196. 196.
    A. Putrino, D. Sebastiani, and M. Parrinello (2000) Generalized variational density functional perturbation theory. J. Chem. Phys. 113, p. 7102ADSCrossRefGoogle Scholar
  197. 197.
    A. Putrino and M. Parrinello (2002) Anharmonic Raman Spectra in High-Pressure Ice from Ab Initio Simulations. Phys. Rev. Lett. 88, p. 176401ADSCrossRefGoogle Scholar
  198. 198.
    I. Souza, J. Íñiguez, and D. Vanderbilt (2002) First-Principles Approach to Insulators in Finite Electric Fields. Phys. Rev. Lett. 89, p. 117602ADSCrossRefGoogle Scholar
  199. 199.
    P. Umari and A. Pasquarello (2002) Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 89, p. 157602ADSCrossRefGoogle Scholar
  200. 200.
    V. Dubois, P. Umari, and A. Pasquarello (2004) Dielectric susceptibility of dipolar molecular liquids by ab initio molecular dynamics: application to liquid HCl. Chem. Phys. Lett. 390, p. 193CrossRefADSGoogle Scholar
  201. 201.
    R. Ramrez, T. Lopez-Ciudad, P. Kumar, and D. Marx (2004) Quantum corrections to classical time-correlation functions: Hydrogen bonding and anharmonic floppy modes. J. Chem. Phys. 121, p. 3973ADSCrossRefGoogle Scholar
  202. 202.
    R. Iftimie and M. E. Tuckerman (2005) Decomposing total IR spectra of aqueous systems into solute and solvent contributions: A computational approach using maximally localized Wannier orbitals. J. Chem. Phys. 122, p. 214508ADSCrossRefGoogle Scholar
  203. 203.
    J. E. Bertie and Z. Lan (1996) Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C. App. Spec. 50, p. 1047ADSCrossRefGoogle Scholar
  204. 204.
    X. Gonze (1995) Adiabatic density-functional perturbation theory. Phys. Rev. A 52, p. 1096ADSCrossRefGoogle Scholar
  205. 205.
    X. Gonze (1995) Perturbation expansion of variational principles at arbitrary order. Phys. Rev. A 52, p. 1086ADSCrossRefGoogle Scholar
  206. 206.
    D. Sebastiani and M. Parrinello (2002) Ab-initio study of NMR chemical shifts of water under normal and supercritical conditions. Chem. Phys. Chem. 3, p. 675Google Scholar
  207. 207.
    J. Schmidt and D. Sebastiani (2005) Anomalous temperature dependence of nuclear quadrupole interactions in strongly hydrogen-bonded systems from first principles. J. Chem. Phys. 123, 074501CrossRefADSGoogle Scholar
  208. 208.
    M. Benoit and D. Marx (2005) The Shapes of Protons in Hydrogen Bonds Depend on the Bond Length. Chem. Phys. Chem. 6, p. 1738Google Scholar
  209. 209.
    M. Profeta, M. Benoit, F. Mauri, and C. J. Pickard (2004) First-Principles Calculation of the NMR Parameters in Ca Oxide and Ca Aluminosilicates: the Partially Covalent Nature of the Ca-O Bond, a Challenge for Density Functional Theory. J. Am. Chem. Soc. 126, p. 12628CrossRefGoogle Scholar
  210. 210.
    I. Frank, J. Hutter, D. Marx, and M. Parrinello (1998) Molecular dynamics in low-spin excited states. J. Chem. Phys. 108, p. 4060ADSCrossRefGoogle Scholar
  211. 211.
    E. K. U. Gross and W. Kohn (1990) Time-dependent density functional theory. Adv. Quant. Chem. 21, p. 255CrossRefGoogle Scholar
  212. 212.
    E. K. U. Gross, J. F. Dobson, and M. Petersilka (1996) Density-functional theory of time-dependent phenomena. In Topics in Current Chemistry, Springer Berlin Heidelberg, pp. 81–172Google Scholar
  213. 213.
    K. Burke and E. K. U. Gros (1998) A guided tour of time-dependent density functional theory. In Density Functionals: Theory and Applications, ed. D. Joubert, Springer Berlin Heidelberg, pp. 116–146Google Scholar
  214. 214.
    N. T. Maitra, K. Burke, E. K. U. G. H. Appel, and R. van Leeuwen (2002) Ten topical questions in time-dependent density functional theory. In Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R.G. Parr, ed. K. D. Sen, World Scientific, pp. 1186–1225Google Scholar
  215. 215.
    M. A. L. Marques and E. K. U. Gross (2004) Time-Dependent Density-Functional Theory. Annu. Rev. Phys. Chem. 55, p. 427CrossRefADSGoogle Scholar
  216. 216.
    E. Runge and E. K. U. Gross (1984) Density functional theory for time dependent systems. Phys. Rev. Lett. 52, p. 997ADSCrossRefGoogle Scholar
  217. 217.
    K. Burke, J. Werschnik, and E. K. U. Gross (2005) Time-dependent density functional theory: Past, present, and future. J. Chem. Phys. 123, 062206CrossRefADSGoogle Scholar
  218. 218.
    M. Petersilka, E. K. U. Gross, and K. Burke (2000) Excitation energies from time-dependent density-functional theory using exact and approximate potentials. Int. J. Quant. Chem. 80, p. 534CrossRefGoogle Scholar
  219. 219.
    T. Grabo, M. Petersilka, and E. K. U. Gross (2000) Molecular excitation energies from time-dependent density-functional theory. Journal of Molecular Structure (Theochem) 501, p. 353CrossRefGoogle Scholar
  220. 220.
    H. Appel, E. K. U. Gross, and K. Burke (2003) Excitations in Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 90, 043005ADSCrossRefGoogle Scholar
  221. 221.
    N. L. Doltsinis and M. Sprik (2000) Electronic excitation spectra from time dependent density functional response theory using plane wave methods. Chem. Phys. Lett. 330, p. 563CrossRefADSGoogle Scholar
  222. 222.
    J. Hutter (2003) Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework. J. Chem. Phys. 118, p. 3928ADSCrossRefGoogle Scholar
  223. 223.
    L. Bernasconi, M. Sprik, and J. Hutter (2003) Time dependent density functional theory study of charge-transfer and intramolecular electronic excitations in acetone–water systems. J. Chem. Phys. 119, p. 12417ADSCrossRefGoogle Scholar
  224. 224.
    L. Bernasconi, J. Blumberger, M. Sprik, and R. Vuilleumier (2004) Density functional calculation of the electronic absorption spectrum of Cu+ and Ag+ aqua ions. J. Chem. Phys. 121, p. 11885ADSCrossRefGoogle Scholar
  225. 225.
    M. Sulpizi, P. Carloni, J. Hutter, and U. Röthlisberger (2003) A hybrid TDDFT/MM investigation of the optical properties of aminocoumarins in water and acetonitrile solution. Phys. Chem. Chem. Phys. 5, p. 4798CrossRefGoogle Scholar
  226. 226.
    M. Sulpizi, U. F. Röhrig, J. Hutter, and U. Rothlisberger (2005) Optical properties of molecules in solution via hybrid TDDFT/MM simulations. Int. J. Quant. Chem. 101, p. 671CrossRefGoogle Scholar
  227. 227.
    L. Bernasconi and M. Sprik (2005) Time-dependent density functional theory description of on-site electron repulsion and ligand field effects in the optical spectrum of hexa-aquoruthenium(II) in solution. J. Phys. Chem. B 109, p. 12222CrossRefGoogle Scholar
  228. 228.
    W. Kohn, Y. Meir, and D. E. Makarov (1998) van der Waals Energies in Density Functional Theory. Phys. Rev. Lett. 80, p. 4153ADSCrossRefGoogle Scholar
  229. 229.
    M. Lein, J. F. Dobson, and E. K. U. Gross (1999) Towards the description of van der Waals interactions within density-functional theory. J. Comput. Chem. 20, p. 12CrossRefGoogle Scholar
  230. 230.
    M. Odelius, D. Laikov, and J. Hutter (2003) Excited state geometries within time-dependent and restricted open-shell density functional theories. J. Mol. Struc. (Theochem) 630, p. 163CrossRefGoogle Scholar
  231. 231.
    N. L. Doltsinis and D. S. Kosov (2005) Plane wave/pseudopotential implementation of excited state gradients in density functional linear response theory: A new route via implicit dierentiation. J. Chem. Phys. 122, p. 144101CrossRefADSGoogle Scholar
  232. 232.
    H. Langer and N. L. Doltsinis (2003) Excited state tautomerism of the DNA base guanine: A restricted open-shell Kohn-Sham study. J. Chem. Phys. 118, p. 5400ADSCrossRefGoogle Scholar
  233. 233.
    N. L. Doltsinis and D. Marx (2002) Nonadiabatic Car-Parrinello molecular dynamics. Phys. Rev. Lett. 88, p. 166402ADSCrossRefGoogle Scholar
  234. 234.
    N. L. Doltsinis (2004) Excited state proton transfer and internal conversion in o-hydroxybenzaldehyde: New insights from nonadiabatic ab initio molecular dynamics. Mol. Phys. 102, p. 499CrossRefADSGoogle Scholar
  235. 235.
    J. M. Foster and S. F. Boys (1960) Canonical Configurational Interaction Procedure. Rev. Mod. Phys. 32, p. 300ADSMathSciNetCrossRefGoogle Scholar
  236. 236.
    C. Edmiston and K. Ruedenberg (1963) Localized Atomic and Molecular Orbitals. Rev. Mod. Phys. 35, p. 457zbMATHADSCrossRefGoogle Scholar
  237. 237.
    W. von Niessen (1972) Density Localization of Atomic and Molecular Orbitals. I. J. Chem. Phys. 56, p. 4290CrossRefADSGoogle Scholar
  238. 238.
    N. Marzari and D. Vanderbilt (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, p. 12847ADSCrossRefGoogle Scholar
  239. 239.
    P. L. Silvestrelli (1999) Maximally localized Wannier functions for simulations with supercells of general symmetry. Phys. Rev. B 59, p. 9703ADSCrossRefGoogle Scholar
  240. 240.
    G. Berghold, C. J. Mundy, A. H. Romero, J. Hutter, and M. Parrinello (2000) General and Efficient Algorithms for Obtaining Maximally-Localized Wannier Functions. Phys. Rev. B 61, p. 10040ADSCrossRefGoogle Scholar
  241. 241.
    I. Souza, N. Marzari, and D. Vanderbilt (2002) Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109ADSCrossRefGoogle Scholar
  242. 242.
    P. L. Silvestrelli and M. Parrinello (1999) Water Molecule Dipole in the Gas and in the Liquid Phase. Phys. Rev. Lett. 82, p. 3308ADSCrossRefGoogle Scholar
  243. 243.
    M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello (2000) Hydrogen Bonding and Dipole Moment of Water at Supercritical Conditions: A First-Principles Molecular Dynamics Study. Phys. Rev. Lett. 85, p. 3245ADSCrossRefGoogle Scholar
  244. 244.
    B. Kirchner and J. Hutter (2004) Solvent effects on electronic properties from Wannier functions in a dimethyl sulfoxide/water mixture. J. Chem. Phys. 121, p. 5133ADSCrossRefGoogle Scholar
  245. 245.
    P. Hunt, M. Sprik, and R. Vuilleumier (2003) Thermal versus electronic broadening in the density of states of liquid water. Chem. Phys. Lett. 376, p. 68CrossRefADSGoogle Scholar
  246. 246.
    R. Iftimie, J. W. Thomas, and M. E. Tuckerman (2004) On-the-fly localization of electronic orbitals in Car–Parrinello molecular dynamics. J. Chem. Phys. 120, p. 2169ADSCrossRefGoogle Scholar
  247. 247.
    I. Coluzza, M. Sprik, and G. Ciccotti (2003) Constrained reaction coordinate dynamics for systems with constraints. Mol. Phys. 101, p. 2885CrossRefADSGoogle Scholar
  248. 248.
    J. VandeVondele and U. Rothlisberger (2000) Efficient Multidimensional Free Energy Calculations for ab initio Molecular Dynamics Using Classical Bias Potentials. J. Chem. Phys. 113, p. 4863ADSCrossRefGoogle Scholar
  249. 249.
    J. VandeVondele and U. Rothlisberger (2002) Canonical Adiabatic Free Energy Sampling (CAFES): A Novel Method for the Exploration of Free Energy Surfaces. J. Phys. Chem. B 106, p. 203CrossRefGoogle Scholar
  250. 250.
    L. Rosso, P. Minary, Z. Zhu, and M. E. Tuckerman (2002) On the use of adiabatic molecular dynamics to calculate free energy profiles. J. Chem. Phys. 116, p. 4389ADSCrossRefGoogle Scholar
  251. 251.
    A. Laio and M. Parrinello (2002) Escaping free-energy minima. Proc. Nat. Acad. Sciences 99, p. 12562ADSCrossRefGoogle Scholar
  252. 252.
    P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello (2000) Ab initio analysis of proton transfer dynamics in (H2O)3H+. Chem. Phys. Lett. 321, p. 225CrossRefADSGoogle Scholar
  253. 253.
    R. Vuilleumier and M. Sprik (2002) Electronic control using density functional perturbation methods. Chem. Phys. Lett. 365, p. 305CrossRefADSGoogle Scholar
  254. 254.
    J. VandeVondele and U. Rothlisberger (2001) Estimating Equilibrium Properties from Non-Hamiltonian Dynamics. J. Chem. Phys. 115, p. 7859ADSCrossRefGoogle Scholar
  255. 255.
    J. VandeVondele and U. Rothlisberger (2002) Accelerating Rare Reactive Events by Means of a Finite Electronic Temperature. J. Am. Chem. Soc. 124, p. 8163CrossRefGoogle Scholar
  256. 256.
    P. Silvestrelli, A. Alavi, M. Parrinello, and D. Frenkel (1996) Hot electrons and the approach to metallic behaviour in Kx(KCl)1-x. Euro. Phys. Lett. 33, p. 551ADSCrossRefGoogle Scholar
  257. 257.
    R. Vuilleumier, M. Sprik, and A. Alavi (2000) Computation of electronic chemical potentials using free energy density functionals. Journal of Molecular Structure (THEOCHEM) 506, p. 343CrossRefGoogle Scholar
  258. 258.
    A. Y. Lozovoi, A. Alavi, J. Kohanoff, and R. M. Lynden-Bell (2001) Ab initio simulation of charged slabs at constant chemical potential. J. Chem. Phys. 115, p. 1661ADSCrossRefGoogle Scholar
  259. 259.
    I. Tavernelli, R. Vuilleumier, and M. Sprik (2002) Ab initio molecular dymamics for molecules with variable numbers of electrons. Phys. Rev. Lett. 88, p. 213002ADSCrossRefGoogle Scholar
  260. 260.
    J. Blumberger, Y. Tateyama, and M. Sprik (2005) Ab initio molecular dynamics simulation of redox reactions in solution. Comp. Pys. Comm. 169, p. 256CrossRefADSGoogle Scholar
  261. 261.
    D. Marx and M. Parrinello (1996) Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys. 104, p. 4077ADSCrossRefGoogle Scholar
  262. 262.
    M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello (1996) Efficient and general algorithms for path integral Car-Parrinello molecular dynamics. J. Chem. Phys. 104, p. 5579ADSCrossRefGoogle Scholar
  263. 263.
    M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello (1997) On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science 275, p. 817CrossRefGoogle Scholar
  264. 264.
    S. Miura, M. Tuckerman, and M. Klein (1998) An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer. J. Chem. Phys. 109, p. 5290ADSCrossRefGoogle Scholar
  265. 265.
    M. Benoit, D. Marx, and M. Parrinello (1998) Quantum effects on phase transitions in high-pressure ice. Comp. Mat. Sci. 10, p. 88CrossRefGoogle Scholar
  266. 266.
    M. Diraison, G. J. Martyna, and M. E. Tuckerman (1999) Simulation studies of liquid ammonia by classical ab initio, classical, and path-integral molecular dynamics. J. Chem. Phys. 111, p. 1096ADSCrossRefGoogle Scholar
  267. 267.
    D. Marx, M. E. Tuckerman, and G. J. Martyna (1999) Quantum dynamics via adiabatic ab initio centroid molecular dynamics. Comput. Phys. Commun. 118, p. 166zbMATHADSCrossRefGoogle Scholar
  268. 268.
    D. Marx, M. E. Tuckerman, and M. Parrinello (2000) Solvated excess protons in water: quantum effects on the hydration structure. J. Phys.: Condens. Matter A 12, p. 153ADSCrossRefGoogle Scholar
  269. 269.
    U. Roethlisberger, M. Sprik, and J. Hutter (2002) Time and length scales in ab initio molecular dynamics. In Bridging time scales: Molecular simulations for the next decade, eds. P. Niebala, M. Maraschal and G. Ciccotti, Springer Verlag, p. 413Google Scholar
  270. 270.
    L. Guidoni, P. Maurer, S. Piana, and U. Rothlisberger (2002) Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity. Quant. Struct.-Act. Rel. 21, p. 119CrossRefGoogle Scholar
  271. 271.
    U. Röhrig, I. Frank, J. Hutter, A. Laio, J. VandeVondele, and U. Röthlisberger (2003) A QM/MM Car-Parrinello Molecular Dynamics Study of the Solvent effects on the Ground State and on the First Excited Singlet State of Acetone in Water. Chem. Phys. Chem. 4, p. 1177Google Scholar
  272. 272.
    M. Sulpizi, A. Laio, J. VandeVondele, U. Rothlisberger, A. Cattaneo, and P. Carloni (2003) Reaction Mechanism of Caspases: Insights from Mixed QM/MM Car-Parrinello Simulations. Proteins-Structure, Function and Genetics 52, p. 212CrossRefGoogle Scholar
  273. 273.
    Y. Liu, D. A. Yarne, and M. E. Tuckerman (2003) Ab initio molecular dynamics calculations with simple, localized, orthonormal real-space basis sets. Phys. Rev. B 68, p. 125110ADSCrossRefGoogle Scholar
  274. 274.
    F. R. Krajewski and M. Parrinello (2005) Stochastic linear scaling for metals and nonmetals. Phys. Rev. B 71, p. 233105ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R. Vuilleumier
    • 1
  1. 1.Laboratoire de Physique Théorique de la Matière Condensée, Tour 24-25, 2ème étage, c.c. 121Université Pierre et Marie CurieParisFrance

Personalised recommendations