Advertisement

Computing Free Energies and Accelerating Rare Events with Metadynamics

  • A. Laio
  • M. Parrinello
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 703)

Abstract

Computer simulations of complex polyatomic systems are nowadays routinely exploited in chemistry, physics and biophysics for extracting informations about equilibrium properties and predictions of long time behavior. As it is well known, a straightforward simulation by molecular dynamics or Monte Carlo can usually provide only limited information, due to the intrinsic complexity of most of the potential energy functions needed to describe real systems. For example, the folding time of most of the proteins is of the order of seconds, while direct simulation of these systems can access at most the microseconds time scale. For this reason the problem of sampling is of great importance in computational physics. One would like to exploit at best the available computer time in order to extract information about events that might happen on a long time scale (“rare events”) and to predict the most probable state of a system.

Keywords

Free Energy Rare Event Free Energy Surface Thermodynamic Force Collective Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. and E. Vanden-Eijnden (2004) Metastability, conformation dynamics, and transition pathways in complex systems. Lecture notes in computational science and engineering, Ed. S. Attinger and P. Koumoutsakos, Springer Berlin HeidelbergGoogle Scholar
  2. 2.
    E. Carter, G. Ciccotti, J. Hynes, and R. Kapral (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, p. 472CrossRefADSGoogle Scholar
  3. 3.
    M. Sprik and G. Ciccotti (1998) Free energy from constrained molecular dynamics. J. Chem. Phys. 109, p. 7737CrossRefADSGoogle Scholar
  4. 4.
    P. A. Bash, U. C. Singh, F. K. Brown, R. Langridge, and P. A. Kollman (1987) Free energy calculation by computer simulation. Science 235, pp. 574–576CrossRefADSGoogle Scholar
  5. 5.
    G. N. Patey and J. P. Valleau (1975) Monte-carlo method for obtaining interionic potential of mean force in ionic solution. J. Chem. Phys. 63, pp. 2334–2339CrossRefADSGoogle Scholar
  6. 6.
    A. Ferrenberg and R. Swendsen (1988) Optimized monte-carlo data-analysis. Phys. Rev. Lett. 61, p. 2635CrossRefADSGoogle Scholar
  7. 7.
    S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem. 16, pp. 1339–1350CrossRefGoogle Scholar
  8. 8.
    B. Roux (1995) The calculation of the potential of mean force using computer simulations. Comput. Phys. Comm. 91, pp. 275–282CrossRefADSGoogle Scholar
  9. 9.
    H. Merlitz and W. Wenzel (2002) Comparison of stochastic optimization methods for receptor-ligand docking. Chem. Phys. Lett. 362, pp. 271–277CrossRefADSGoogle Scholar
  10. 10.
    C. Jarzynski (1997) Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, p. 2690CrossRefADSGoogle Scholar
  11. 11.
    E. Darve and A. Pohorille (2001) Calculating free energies using average force. J. Chem. Phys. 115, pp. 9169–9183CrossRefADSGoogle Scholar
  12. 12.
    D. Rodriguez-Gomez, E. Darve, and A. Pohorille (2004) Assessing the efficiency of free energy calculation methods J. Chem. Phys. 120, p. 3563CrossRefADSGoogle Scholar
  13. 13.
    L. Rosso, P. Minary, Z. Zhu, and M. Tuckerman (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J. Chem. Phys. 116, pp. 4389–4402.Google Scholar
  14. 14.
    E. Weinan, W. Ren, and E. Vanden-Eijnden (2005) Finite temperature string method for the study of rare events. J. Phys. Chem. B 109, p. 6688CrossRefGoogle Scholar
  15. 15.
    C. Dellago, P. Bolhuis, F. S. Csajka, and D. Chandler (1998) Transition path sampling and the calculation of rate constants J. Chem. Phys. 108, pp. 1964– 1977CrossRefADSGoogle Scholar
  16. 16.
    C. Dellago, P. Bolhuis, and P. Geissler (2002) Transition path sampling. Adv. Chem. Phys. 123, pp. 1–78CrossRefGoogle Scholar
  17. 17.
    A. K. Faradjian and R. Elber (2004) Computing time scales from reaction coordinates by milestoning. J. Chem Phys. 120, pp. 10880–10889CrossRefADSGoogle Scholar
  18. 18.
    H. Grubmüller (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52, pp. 2893–2906CrossRefADSGoogle Scholar
  19. 19.
    D. Cvijovic and J. Klinowski (1995) Taboo search - an approach to the multiple minima problem. Science 267, pp. 664–666CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    T. Huber, A. Torda, and W. van Gunsteren (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation. J. Comput. Aided Mol. Des. 8, pp. 695–708CrossRefADSGoogle Scholar
  21. 21.
    A. K. N. Nakajima, J. Higo and H. Nakamura (1997) Flexible docking of a ligand peptide to a receptor protein by multicanonical molecular dynamics simulation. Chem. Phys. Lett. 278, pp. 297–301CrossRefADSGoogle Scholar
  22. 22.
    B. A. Heymann and H. Grubmüller (2001) Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and nonadditivity of unbinding forces. Biophys. J. 81, pp. 1295–1313CrossRefGoogle Scholar
  23. 23.
    H. G. and J. H. (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, pp. 9978–9985Google Scholar
  24. 24.
    R. Fletcher and M. J. D. Powell (1963) A rapidly convergent descent method for minimization. Comput. J. 6, pp. 163–168zbMATHMathSciNetGoogle Scholar
  25. 25.
    J. Gullingsrud, R. Braun, and K. Schulten (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J. Comp. Phys. 151, pp. 190–211zbMATHCrossRefADSGoogle Scholar
  26. 26.
    R. Elber and M. Karplus (1987) A method for determining reaction paths in large molecules – application to myoglobin. Chem. Phys. Lett. 139, p. 375CrossRefADSGoogle Scholar
  27. 27.
    A. Laio and M. Parrinello (2002) Escaping free energy minima. Proc. Natl. Acad. Sci. USA 99, pp. 12562–12566CrossRefADSGoogle Scholar
  28. 28.
    C. Theodoropoulos, Y. Qian, and I. G. Kevrekidis (2000) Coarse stability and bifurcation analysis using time-steppers: A reaction-diffusion example. Proc. Natl. Acad. Sci. USA 97, pp. 9840–9843zbMATHCrossRefADSGoogle Scholar
  29. 29.
    I. G. Kevrekidis, C. W. Gear, and G. Hummer (2004) Equation-free: The computer-aided analysis of comptex multiscale systems. Aiche J. 50(7), pp. 1346–1355CrossRefGoogle Scholar
  30. 30.
    C. Micheletti, A. Laio, and M. Parrinello (2004) Reconstructing the density of states by history-dependent metadynamics. Phys. Rev. Lett. 92, p. 170601CrossRefADSGoogle Scholar
  31. 31.
    F. Wang and D. Landau (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, p. 2050CrossRefADSGoogle Scholar
  32. 32.
    G. Bussi, A. Laio, and M. Parrinello (2006) Equilibrium free energies from non equilibrium metadynamics. Phys. Rev. Lett. 96, p. 090601CrossRefADSGoogle Scholar
  33. 33.
    R. Martoňák, A. Laio, and M. Parrinello (2003) Predicting crystal structures: The parrinello-rahman method revisited. Phys. Rev. Lett. 90, p. 75503CrossRefADSGoogle Scholar
  34. 34.
    P. Raiteri, R. Martoňák, and M. Parrinello (2005) Exploring polymorphism: the case of benzene. Angew. Chem. Int. Ed. 44, pp. 3769–3773CrossRefGoogle Scholar
  35. 35.
    R. Martoňák, A. Laio, M. Bernasconi, C. Ceriani, P. Raiteri, and M. Parrinello (2005) Simulation of structural phase transitions by metadynamics. Zeitschrift fur Kristallographie 220, pp. 489–498CrossRefGoogle Scholar
  36. 36.
    M. Iannuzzi, A. Laio, and M. Parrinello (2003) Efficient exploration of reactive potential energy surfaces using car-m. parrinelloolecular dynamics. Phys Rev. Lett. 90, p. 238302CrossRefADSGoogle Scholar
  37. 37.
    A. Stirling, M. Iannuzzi, A. Laio, and M. Parrinello (2004) Azulene-tonaphthalene rearrangement: The car-parrinello metadynamics method explores various reaction mechanisms. Chem. Phys. Chem. 5, pp. 1558–156Google Scholar
  38. 38.
    S. Churakov, M. Iannuzzi, and M. Parrinello (2004) Ab initio study of dehydroxylation-carbonation reaction on brucite surface. J. Phys. Chem. B 108, p. 11567CrossRefGoogle Scholar
  39. 39.
    F. Gervasio, A. Laio, M. Iannuzzi, and M. Parrinello (2004) Influence of dna structure on the reactivity of the guanine radical cation. Chem. Eur. J. 10, p. 4846CrossRefGoogle Scholar
  40. 40.
    B. Ensing, A. Laio, F. Gervasio, M. Parrinello, and M. Klein (2004) A minimum free energy reaction path for the e2 reaction between fiuoro ethane and a fiuoride ion. J. Am. Chem. Soc. 126(31), p. 9492CrossRefGoogle Scholar
  41. 41.
    B. Ensing and M. L. Klein (2005) Perspective on the reactions between f- and ch3ch2f: The free energy landscape of the e2 and s(n)2 reaction channels. Proc. Natl. Acad. Sci. USA 102, pp. 6755–6759CrossRefADSGoogle Scholar
  42. 42.
    Y. Wu, J. Schmitt, and R. Car (2004) Mapping potential energy surfaces. J. Chem. Phys. 121, pp. 1193–1200CrossRefADSGoogle Scholar
  43. 43.
    M. Ceccarelli, C. Danelon, A. Laio, and M. Parrinello (2004) Microscopic mechanism of antibiotics translocation through a porin. Biophys J. 87, pp. 58–64CrossRefADSGoogle Scholar
  44. 44.
    F. L. Gervasio, A. Laio, and M. Parrinello (2005) Flexible docking in solution using metadynamics. J. Am. Chem. Soc. 127, pp. 2600–2607CrossRefGoogle Scholar
  45. 45.
    D. Branduardi, F. L. Gervasio, A. Cavalli, M. Recantini, and M. Parrinello (2005) The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human ache gorge. J. Am. Chem. Soc. 127(25), p. 9147CrossRefGoogle Scholar
  46. 46.
    F. Zipoli, M. Bernasconi, and R. Martoňák (2004) Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited. Eur. Phys. J. B 39, p. 41CrossRefADSGoogle Scholar
  47. 47.
    M. Iannuzzi and M. Parrinello (2004) Proton transfer in heterocycle crystals. Phys. Rev. Lett. 93, p. 025901CrossRefADSGoogle Scholar
  48. 48.
    D. Donadio, P. Raiteri, and M. Parrinello (2005) Topological defects and bulk melting of hexagonal ice. J. Phys. Chem. B 109, p. 5421CrossRefGoogle Scholar
  49. 49.
    R. Car and M. Parrinello (1985) Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett. 45, p. 2471CrossRefADSGoogle Scholar
  50. 50.
    M. Parrinello and A. Rahman (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, p. 1196CrossRefADSGoogle Scholar
  51. 51.
    S. Nose (1984) A unified formulation of the constant temperature moleculardynamics methods. J. Chem. Phys. 81, pp. 511–519CrossRefADSGoogle Scholar
  52. 52.
    H. C. Andersen (1980) Molecular-dynamics simulations at constant pressure and-or temperature. J. Chem. Phys. 72, pp. 2384–2393CrossRefADSGoogle Scholar
  53. 53.
    B. Ensing, A. Laio, M. Parrinello, and M. Klein (2005) A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. J. Phys. Chem. B 109, pp. 6676–6687CrossRefGoogle Scholar
  54. 54.
    R. Zwanzig (1961) Memory effects in irreversible thermodynamics. Phys. Rev. 124, pp. 983–992zbMATHCrossRefADSGoogle Scholar
  55. 55.
    H. Ottinger (1998) General projection operator formalism for the dynamics and thermodynamics of complex fluids. Phys. Rev. E 57, p. 1416CrossRefADSGoogle Scholar
  56. 56.
    A. Laio, A. Rodriguez-Fortea, F. L. Gervasio, M. Ceccarelli, and M. Parrinello (2005) Assessing the accuracy of metadynamics. J. Phys. Chem. B 109, pp. 6714–6721CrossRefGoogle Scholar
  57. 57.
    C. Gardiner (2004) Handbook of Stochastic Methods. Springer Berlin HeidelbergzbMATHGoogle Scholar
  58. 58.
    M. Ceccarelli, F. Mercuri, D. Passerone, and M. Parrinello (2005) The microscopic switching mechanism of a [2]catenane. J. Phys. Chem. B 109, pp. 17094– 17099CrossRefGoogle Scholar
  59. 59.
    P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B 110, pp. 3533–3539CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Laio
    • 1
  • M. Parrinello
    • 2
  1. 1.International School for Advanced Studies – SISSATriesteItaly
  2. 2.Dept. of Chemistry and Applied BiosciencesComputational ScienceLuganoSwitzerland

Personalised recommendations