Advertisement

A Passivity Approach to Vision-based Dynamic Control of Robots with Nonlinear Observer

  • Hiroyuki Kawai
  • Shintaro Izoe
  • Masayuki Fujita
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 4)

Abstract

This paper investigates a vision-based robot motion control using position measurements and visual information. Firstly the model of relative rigid body motion (positions and rotations) and the method for estimation of the relative rigid body motion are presented in order to derive the visual feedback system. Secondly we lead a structural passivity-like property of the visual feedback system. Next, we consider the velocity observer and derive the dynamic visual feedback system which contains the manipulator dynamics. Finally the main results with respect to stability and L 2-gain performance analysis for the proposed dynamic visual feedback control are discussed. Our proposed method is based on passivity of the visual feedback system and the manipulator dynamics.

Keywords

Visual Feedback Manipulator Dynamic Rigid Body Motion Joint Velocity Nonlinear Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hutchinson S., Hager G.D., Corke P.I. (1996) A Tutorial on Visual Servo Control. IEEE Trans. Robot. Automat. 12:651–670CrossRefGoogle Scholar
  2. 2.
    Espiau B., Chaumette F., Rives P. (1992) A New Approach to Visual Servoing in Robotics. IEEE Trans. Robot. Automat. 8:313–326CrossRefGoogle Scholar
  3. 3.
    Papanikolopoulos N.P., Khosla P.K., Kanade T. (1993) Visual Tracking of a Moving Target by a Camera Mounted on a Robot: A Combination of Control and Vision IEEE Trans. Robot. Automat. 9:14–35CrossRefGoogle Scholar
  4. 4.
    Wilson W.J., Williams Hulls C.C., Bell G.S. (1996) Relative End-Effector Control Using Cartesian Position Based Visual Servoing. IEEE Trans. Robot. Automat. 12:684–696CrossRefGoogle Scholar
  5. 5.
    Hashimoto K., Kimura H. (1993) Dynamic Visual Servoing with Nonlinear Model-based Control. Proc. 12th IFAC World Congr. 9:405–408Google Scholar
  6. 6.
    Kelly R., Carelli R., Nasisi O., Kuchen B., Reyes F. (2000) Stable Visual Servoing of Camera-in-Hand Robotic Systems. IEEE/ASME Trans. Mechatron. 5:39–48CrossRefGoogle Scholar
  7. 7.
    Zergeroglu E., Dawson D.M., de Queiroz M.S., Behal A. (2001) Vision-Based Nonlinear Tracking Controllers with Uncertain Robot-Camera Parameters. IEEE Trans. Mechat. 6:322–337CrossRefGoogle Scholar
  8. 8.
    Maruyama A., Fujita M. (1999) Visual Feedback Control of Rigid Body Motion Base on Dissipation Theoretical Approach. Proc. 38th IEEE Conf. Decision Cont. 4161–4166Google Scholar
  9. 9.
    Maruyama A., Kawai H., Fujita M. (2001) Stability and Tracking Performance of Dynamic Visual Feedback Control for Nonlinear Mechanical Systems. Proc. 40th IEEE Conf. Decision Cont. 4415–4420Google Scholar
  10. 10.
    F. Chaumette (1998) Potential Problems of Stability and Convergence in Visual Servoing. In:Kriegman D.J., Hager G.D., Morse A.S.(Eds) The Confluence of Vision and Control. Springer, London, 68–78Google Scholar
  11. 11.
    Malis E., Chaumette F., Boudet S. (1999) 2-1/2-D Visual Servoing. IEEE Trans. Robot. Automat. 15:238–250CrossRefGoogle Scholar
  12. 12.
    Cowan N.J., Koditschek D.E. (1999) Planar Image Based Visual Servoing as a Navigation Problem. Proc. 1999 IEEE Int. Conf. Robot. Automat. 611–617Google Scholar
  13. 13.
    Conticelli F., Allotta B. (2001) Nonlinear Controllability and Stability Analysis of Adaptive Image-Based Systems. IEEE Trans. Robot. Automat. 17:208–214CrossRefGoogle Scholar
  14. 14.
    Mezouar Y., Chaumette F. (2000) Path Planning in Image Space for Robust Visual Servoing. Proc. IEEE Int. Conf. Robot. Automat. 2759–2764Google Scholar
  15. 15.
    Ahang H., Ostrwski J.P. (2002) Visual Motion Planning for Mobile Robots. IEEE Trans. Robot. Automat. 18:199–208CrossRefGoogle Scholar
  16. 16.
    Arimoto S. (1996) Control Theory of Non-linear Mechanical Systems — A Passivity-based and Circuit-theoretic Approach. Oxford University Press, New YorkzbMATHGoogle Scholar
  17. 17.
    Berghuis H., Nijmeijer H. (1993) A Passivity Approach to Controller-Observer Design for Robots. IEEE Trans. Robot. Automat. 9:740–754CrossRefGoogle Scholar
  18. 18.
    Murray R., Li Z., Sastry S.S. (1994) A Mathematical Introduction to Robotic Manipulation. CRC PressGoogle Scholar
  19. 19.
    Bullo F., Murray R. (1999) Tracking for Fully Actuated Mechanical Systems: a Geometric Framework. Automatica. 35:17–34zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    van der Schaft A. (2000) L2-Gain and Passivity Techniques in Nonlinear Con-trol, 2nd edn. Springer, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Hiroyuki Kawai
    • 1
  • Shintaro Izoe
    • 1
  • Masayuki Fujita
    • 1
  1. 1.Department of Electrical and Electronic EngineeringKanazawa UniversityKanazawaJapan

Personalised recommendations