Security Analysis of the MOR Cryptosystem

  • Christian Tobias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2567)


The paper cryptanalyses a new public key cryptosystem that has been recently proposed by Paeng, Ha, Kim, Chee and Park [5]. The scheme works on finite non-abelian groups. We focus on the group SL(2, ℤp) ×θℤp which was discussed in [5] extensively.


MOR Cryptosystem Public Key Cryptosystem Cryptanalysis Conjugacy Problem Finite Non Abelian Groups 


  1. [1]
    I. Anshel, M. Anshel, D. Goldfeld, “An Algebraic Method for Public-Key Cryptography”, Mathematical Research Letters, 6 (1999), pp.287–291 176zbMATHMathSciNetGoogle Scholar
  2. [2]
    S. Blackburn, S. Galbraith, “Cryptanalysis of two cryptosystems based on group action”, Advances in Cryptology-Asiacrypt 1999, LNCS 1716 176Google Scholar
  3. [3]
    K.H. Koo, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, “New Public-Key Cryptosystem Using Braid Groups”, Advances in Cryptology-Crypto 2000, LNCS 1880, pp. 166–183 176Google Scholar
  4. [4]
    E. Lee, S. J. Lee, S.G. Hahn, “Pseudorandomness from Braid Groups”, Advances in Cryptology-Crypto 2001, LNCS 2139 176Google Scholar
  5. [5]
    Seong-Hun Paeng, Kil-Chan Ha, Jae Heon Kim, Seongtaek Chee, Choonsik Park, “New Public Key Cryptosystem Using Finite Non Abelian Groups”, Advances in Cryptology-Crypto 2001, LNCS 2139 175, 176, 177, 178, 179, 181, 184Google Scholar
  6. [6]
    Seong-Hun Paeng, Daesung Kwon, Kil-Chan Ha, Jae Heon Kim “Improved public key cryptosystem using finite non abelian groups”, IACR EPrint-Server, Report 2001/066, 175
  7. [7]
    A. Yamamura, “Public key cryptosystems using the modular group”, 1st International Public Key Cryptography Conference PKC 1998, LNCS 1431 176Google Scholar
  8. [8]
    A. Yamamura, “A functional cryptosystem using a group action”, 4th Australian Information Security and Privacy Conference ACISP 1999, LNCS 1587 176Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Tobias
    • 1
  1. 1.Department of MathematicsJustus Liebig University GiessenGiessenGermany

Personalised recommendations