Advertisement

A Lattice Based Public Key Cryptosystem Using Polynomial Representations

  • Seong-Hun Paeng
  • Bae Eun Jung
  • Kil-Chan Ha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2567)

Abstract

In Crypto 97, a public key cryptosystem based on the closest vector problem was suggested by Goldreich, Goldwasser and Halevi [4]. In this paper, we propose a public key cryptosystem applying representations of polynomials to the GGH encryption scheme. Its key size is much smaller than the GGH system so that it is a quite practical and efficient lattice based cryptosystem.

Keywords

GGH cryptosystem lattice based public key cryptosystem polynomial representation 

References

  1. [1]
    D. Coppersmith, A. Shamir Lattice Attacks on NTRU, Advances in Cryptology-Eurocrypt’ 97, LNCS 1233 (1997), 52–61Google Scholar
  2. [2]
    E. Fujisaki, T. Okamoto Secure Integration of Asymmetric and Symmetric Encryption Schemes, Advances in Cryptology-Crypto’ 99, LNCS 1666 (1999), 537–554 306Google Scholar
  3. [3]
    C. Gentry Key Recovery and Message Attacks on NTRU-Composite, Advances in Cryptology-Eurocrypt’ 01, LNCS 2045 (2001), 182–194Google Scholar
  4. [4]
    O. Goldreich, S. Goldwasser, S. Halevi Public Key Cryptosystems from Lattice Reduction Problems, Advances in Cryptology-Crypto’ 97, LNCS 1294 (1997), 112–131 292, 294CrossRefGoogle Scholar
  5. [5]
    J. Hoffstein, J. Pipher, J. Silverman NTRU: a Ring Based Public Key Cryptosystem, ANTS III, LNCS 1423 (1998), 267–288 295Google Scholar
  6. [6]
    E. Jaumels, A. Joux A Chosen-Ciphertext Attack against NTRU, Advances in Cryptology-Crypto 2000, LNCS 1880 (2000), 20–35Google Scholar
  7. [7]
    R. Lidl, H. Niederreiter Introduction to Finite Fields and Their Applications, Cambridge University Press, (1986) 300Google Scholar
  8. [8]
    D. Micciancio Improving Lattice Based Cryptosystems Using the Hermite Normal Form, CaLC 2001, LNCS 2146 (2001), 126–145 292, 300, 305Google Scholar
  9. [9]
    P. Nguyen Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto’ 97, Advances in Cryptology-Crypto’ 99, LNCS 1666 (1999), 288–304 292, 293, 294, 299Google Scholar
  10. [10]
    C.P. Schnorr A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms, Theoretical Computer Science 53 (1987), 201–224 295, 300zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    L. C. Washington Introduction to Cyclotomic Fields, Springer-Verlag, GTM 83 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Seong-Hun Paeng
    • 1
  • Bae Eun Jung
    • 2
  • Kil-Chan Ha
    • 3
  1. 1.ETRITaejonKorea
  2. 2.Department of Applied MathematicsSejong UniversitySeoulKorea
  3. 3.Department of MathematicsKonkuk UniversitySeoulKorea

Personalised recommendations