Advertisement

Problems and Solutions for Markup for Mathematical Examples and Exercises

  • Georgi Goguadze
  • Erica Melis
  • Carsten Ullrich
  • Paul Cairns
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2594)

Abstract

This paper reports some deficiencies of the current status of the markup for mathematical documents, OMDoc, and proposes extensions. The observations described arose from trying to represent mathematical knowledge with the goal to present it according to several well-established teaching strategies for mathematics through the learning environment ActiveMath. The main concern here is with examples, exercises, and proofs.

Keywords

knowledge representation markup for mathematics documents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ainsworth, D. Clarke, and R. Gaizaukas. Using edit distances algorithms to compare alternative approaches to ITS authoring. In S.A. Cerri, G. Gouarderes, and F. Paraguacu, editors, Intelligent Tutoring Systems, 6th International Conference, ITS2002, volume 2363 of LNCS, pages 873–882. Springer-Verlag, 2002.zbMATHGoogle Scholar
  2. 2.
    S. Bennett, S. McRobb, R. Farmer, Object-Oriented Systems Analysis and Design using UML, McGraw Hill, 1999Google Scholar
  3. 3.
    K. G. Binmore, Mathematical Analysis: a straightforward approach, second edition, Cambridge University Press, 1982Google Scholar
  4. 4.
    B. Bollobás, Linear Analysis: an introductory course, Cambridge University Press, 1990Google Scholar
  5. 5.
    J. Büdenbender, E. Andres, Adrian Frischauf, G. Goguadze, P. Libbrecht, E. Melis, and C. Ullrich. Using computer algebra systems as cognitive tools. In S.A. Cerri, G. Gouarderes, and F. Paraguacu, editors, 6th International Conference on Intelligent Tutor Systems (ITS-2002), 2363 Lecture Notes in Computer Science, pages 802–810. Springer-Verlag, 2002.zbMATHGoogle Scholar
  6. 6.
    O. Caprotti and A. M. Cohen. Draft of the open math standard, Open Math Consortium, http://www.nag.co.uk/projects/OpenMath/omstd/, 1998.
  7. 7.
    P. Cairns, J. Gow, On Dynamically Presenting A Topology Course, Submitted to Annals of Mathematics and Artificial Intelligence (Special issue on Mathematical Knowledge Management) http://www.uclic.ucl.ac.uk/topology/
  8. 8.
    D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathematical markup language, version 2.0, 2001. http://www.w3.org/TR/MathML2/.
  9. 9.
    A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive! Springer-Verlag, 1999.Google Scholar
  10. 10.
    B.I. Dahn and H. Wolter. Analysis Individuell, Springer-Verlag, 2000.Google Scholar
  11. 11.
    J. Harrison, Formalized Mathematics, Math. Universalis, 2, 1996Google Scholar
  12. 12.
    I. N. Herstein, Topics in Algebra, second edition, Wiley, 1975Google Scholar
  13. 13.
    M. Kohlhase, OMDoc: Towards an OpenMath Representation of Mathematical Documents, Seki Report, FR Informatik, Universität des Saarlandes, 2000.Google Scholar
  14. 14.
    L. Lamport, How to write a proof, American Mathematical Monthly, 102(7) p600–608, 1994CrossRefGoogle Scholar
  15. 15.
    E. Melis, U. Leron A Proof Presentation Suitable for Teaching Proofs, 9th International Conference on Artificial Intelligence in Education, pages 483–490, 1999.Google Scholar
  16. 16.
    E. Melis, J. Büdenbender, E. Andres, Adrian Frischauf, G. Goguadze, P. Libbrecht, M. Pollet, and C. Ullrich. Activemath: A generic and adaptive web-based learning environment, Artificial Intelligence and Education, 12(4), 2001.Google Scholar
  17. 17.
    A. O. Morris, Linear Algebra: an introduction, second edition, van Nostrand Reinhold, 1982Google Scholar
  18. 18.
    A. Schwarz, M. Voss, Universität des Saarlandes, Multimedia im Mathematik-Unterricht, Copyright ATMedia GmbH, 1998,1999Google Scholar
  19. 19.
    S. Willard, General Topology, Addison Wesley, 1970Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Georgi Goguadze
    • 1
  • Erica Melis
    • 1
  • Carsten Ullrich
    • 1
  • Paul Cairns
    • 2
  1. 1.DFKI SaarbrückenSaarbrückenGermany
  2. 2.UCL Interaction CentreUniversity College LondonLondon WC1H OAPUK

Personalised recommendations