Advertisement

Models of Neutrino Masses and Mixing

  • Guido Altarelli
Conference paper
  • 385 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

We briefly reviewmo dels of neutrino masses and mixings. In viewof the existing experimental ambiguities many possibilities are still open. After an overview of the main alternative options we focus on the most constrained class of models based on three widely split light neutrinos within SUSY Grand Unification

Keywords

Neutrino Masse Charged Lepton Sterile Neutrino Solar Neutrino Proton Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Altarelli and F. Feruglio, Phys. Lett. B 439, 112 (1998).CrossRefADSGoogle Scholar
  2. 2.
    G. Altarelli and F. Feruglio, JHEP 11, 21 (1998).CrossRefADSGoogle Scholar
  3. 3.
    G. Altarelli and F. Feruglio, Phys. Lett. B 451, 388 (1999).CrossRefADSGoogle Scholar
  4. 4.
    G. Altarelli and F. Feruglio, Phys. Rep. 320, 295 (1999).CrossRefADSGoogle Scholar
  5. 5.
    G. Altarelli, F. Feruglio and I. Masina, Phys. Lett. B 472, 382 (2000).CrossRefADSGoogle Scholar
  6. 6.
    G. Altarelli, F. Feruglio and I. Masina, JHEP 11, 040 (2000).CrossRefADSGoogle Scholar
  7. 7.
    G. Altarelli and F. Feruglio, hep-ph/0102301.Google Scholar
  8. 8.
    M. Gell-Mann, P. Ramond and R. Slansky in Supergravity, ed. P. van Nieuwenhuizen and D. Z. Freedman, North-Holland, Amsterdam, 1979, p.315; T. Yanagida, in Proceedings of the Workshop on the unified theory and the baryon number in the universe, ed. O. Sawada and A. Sugamoto, KEK report No. 79-18, Tsukuba, Japan, 1979. See also R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).Google Scholar
  9. 9.
    See, for example, M. C. Gonzalez-Garcia and C. Pena-Garay, hep-ph/0011245; G. L. Fogli, E. Lisi and A. Marrone, Phys. Rev. D63, 053008 (2001); S. M. Bilenkii, C. Giunti, W. Grimus and T. Schwetz, Phys. Rev. D 60, 0073007 (1999).Google Scholar
  10. 10.
    P. Horava and E. Witten, Nuc. Phys. B 475, 94 (1996); N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    For an immersion into this subject, see, for example, the recent paper by A. Lukas, P. Ramond, A. Romanino and G. Ross, hep-ph/0011295 and references therein.Google Scholar
  12. 12.
    C.D. Hoyle et al, Phys. Rev. Lett. 86(2001)1418 (hep-ph/0011014).CrossRefADSGoogle Scholar
  13. 13.
    See, for example, I. Antoniadis and K. Benakli, hep-ph/0007226.Google Scholar
  14. 14.
    S. M. Barr and I. Dorsner, hep-ph/0003058.Google Scholar
  15. 15.
    F. Vissani, hep-ph/9708483; H. Georgi and S.L. Glashow, hep-ph/9808293.Google Scholar
  16. 16.
    J. Ellis and S. Lola, hep-ph/9904279; J.A. Casas et al, hep-ph/9904395, hepph/9905381, hep-ph/9906281; R. Barbieri, G.G. Ross and A. Strumia, hepph/9906470; E. Ma, hep-ph/9907400; K.R.S. Balaji et al, hep-ph/0001310 and hep-ph/0002177.Google Scholar
  17. 17.
    Examples of degenerate models are described in A. Ioannisian, J. W. F. Valle, Phys. Lett. B 332, 93 (1994); M. Fukugita, M. Tanimoto, T. Yanagida, Phys. Rev. D 57, 4429 (1998) M. Tanimoto, hep-ph/9807283 and hep-ph/9807517; H. Fritzsch, Z. Xing, hep-ph/9808272; R. N. Mohapatra, S. Nussinov, hep-ph/9808301 and hep-ph/9809415; M. Fukugita, M. Tanimoto, T. Yanagida, hep-ph/9809554; Yue-Liang Wu, hep-ph/9810491; J. I. Silva-Marcos, hep-ph/9811381; C. Wetterich, hep-ph/9812426; S.K. Kang and C.S. Kim, hep-ph/9811379.CrossRefADSGoogle Scholar
  18. 18.
    R. Barbieri, L. J. Hall, D. Smith, A. Strumia and N. Weiner, hep/ph 9807235.Google Scholar
  19. 19.
    S. F. King, Phys. Lett. B 439, 350 (1998) and hep-ph/9904210; S. Davidson and S. F. King, Phys. Lett. B 445, 191 (1998); Q. Shafi and Z. Tavartkiladze, Phys. Lett B 451, 129 (1999).CrossRefADSGoogle Scholar
  20. 20.
    H. Georgi and C. Jarlskog, Phys. Lett. B 86, 297 (1979).CrossRefADSGoogle Scholar
  21. 21.
    J. Ellis and M. K. Gaillard, Phys. Lett. B 88, 315 (1979).CrossRefADSGoogle Scholar
  22. 22.
    C. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979).CrossRefADSGoogle Scholar
  23. 23.
    W. Buchmuller and T. Yanagida, hep-ph/9810308.Google Scholar
  24. 24.
    P. Binetruy, S. Lavignac, S. Petcov and P. Ramond, Nucl. Phys. B 496, 3 (1997); N. Irges, S. Lavignac, P. Ramond, Phys. Rev. D 58, 5003 (1998); Y. Grossman, Y. Nir, Y. Shadmi, hep-ph/9808355.CrossRefADSGoogle Scholar
  25. 25.
    Y. Hayato et al, (SuperKamiokande Collab.), Phys. Rev. Lett. 83, 1529 (1999).CrossRefADSGoogle Scholar
  26. 26.
    A. Masiero et al, Phys. Lett. B 115, 380 (1982); B Grinstein, Nucl. Phys. B 206, 387 (1982); Z. Berezhiani and Z. Tavartkiladze, Phys. Lett. B 409, 220 (1997).CrossRefADSGoogle Scholar
  27. 27.
    P. Fayet, Phys. Lett. B 146, 41 (1984).CrossRefADSGoogle Scholar
  28. 28.
    Y. Kawamura, hep-ph/0012125.Google Scholar
  29. 29.
    L. Hall and Y. Nomura, hep-ph/0103125.Google Scholar
  30. 30.
    C. H. Albright and S. M. Barr, Phys. Rev. D 58, 013002 (1998); hep-ph/9901318; hep-ph/0002155; hep-ph/0003251; C. H. Albright, K. S. Babu and S. M. Barr, Phys. Rev. Lett. 81, 1167 (1998).CrossRefADSGoogle Scholar
  31. 31.
    See, for example, S. Lola and G. G. Ross, hep-ph/9902283; K. Babu, J. Pati and F. Wilczek, hep-ph/9912538.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Guido Altarelli
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations