Advertisement

States of Strongly Interacting Matter

  • Helmut Satz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

I discuss the phase structure of strongly interacting matter at high temperatures and densities, as predicted by statistical QCD, and consider in particular the nature of the transition of hot hadronic matter to a plasma of deconfined quarks and gluons.

Keywords

Chiral Symmetry String Tension Polyakov Loop Chiral Limit Cluster Percolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 78, 889 (1951).Google Scholar
  2. 2.
    R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965).Google Scholar
  3. 3.
    L. Euler, Novi Commentarii Academiae Scientiarum Petropolitanae 3, 125 (1753); E. Schröder, Z. Math. Phys. 15, 361 (1870); G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 17, 75 (1918).Google Scholar
  4. 4.
    S. Fubini and G. Veneziano, Nuovo Cim. 64A, 811 (1969).CrossRefADSGoogle Scholar
  5. 5.
    K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).CrossRefADSGoogle Scholar
  6. 6.
    N. Cabibbo and G. Parisi, Phys. Lett. 59B, 67 (1975).ADSGoogle Scholar
  7. 7.
    H. Satz, Fortschr. Phys. 33, 259 (1985).CrossRefGoogle Scholar
  8. 8.
    O. Kaczmarek et al., Phys. Rev. D 62, 034021 (2000).CrossRefADSGoogle Scholar
  9. 9.
    D. Bailin and A. Love, Phys. Rep. 107, 325 (1984).CrossRefADSGoogle Scholar
  10. 10.
    K. Rajagopal, Nucl. Phys. A 642, 26c (1998); Nucl. Phys. A 661, 150c (1999); E. Shuryak, Nucl. Phys. A 642, 14c (1998); Th. Schäfer, Nucl. Phys. A 642, 45c (1998).CrossRefADSGoogle Scholar
  11. 11.
    F. Karsch, hep-lat/0106019.Google Scholar
  12. 12.
    R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).CrossRefADSGoogle Scholar
  13. 13.
    R. V. Gavai, A. Gocksch and M. Ogilvie, Phys. Rev. Lett. 56, 815 (1986).CrossRefADSGoogle Scholar
  14. 14.
    S. Digal, E. Laermann and H. Satz, Eur. Phys. J. C 18, 583 (2001).zbMATHCrossRefADSGoogle Scholar
  15. 15.
    S. Fortunato and H. Satz, Phys. Lett. B 509, 189 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    M. Caselle et al., hep-lat/0110160, to appear in the Proceedings of Lattice 2001, Oct. 2001, Berlin, Germany.Google Scholar
  17. 17.
    For a recent survey, see D. Stauffer and A. Aharony, Introduction to Percolation Theory, (Taylor & Francis, London 1994).Google Scholar
  18. 18.
    C. M. Fortuin and P. W. Kasteleyn, J. Phys. Soc. Japan 26 (Suppl.), 11 (1969); Physica 57, 536 (1972).ADSGoogle Scholar
  19. 19.
    A. Coniglio and W. Klein, J. Phys. A 13, 2775 (1980).CrossRefADSGoogle Scholar
  20. 20.
    J. Kertész, Physica A 161, 58 (1989).CrossRefADSGoogle Scholar
  21. 21.
    S. Fortunato and H. Satz, hep-ph/0108058; Nucl. Phys. B, in press.Google Scholar
  22. 22.
    H. Satz, Nucl. Phys. A 642, 130c (1998).CrossRefADSGoogle Scholar
  23. 23.
    S. Fortunato and H. Satz, Phys. Lett. B 475, 311 (2000); Nucl. Phys. A 681, 466c (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    H. Satz, hep-lat/0110013, to appear in the Proceedings of the Europhysics Conference on Computational Physics, Aachen, Germany, September 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Helmut Satz
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations