Advertisement

Ghost-Free APT Analysis of Perturbative QCD Observables

  • Dmitry V. Shirkov
Conference paper
  • 372 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

The review of the essence and of application of recently devised ghost-free Analytic Perturbation Theory (APT) is presented. First, we discuss the main intrinsic problem of perturbative QCD — ghost singularities and with the resume of its resolving within the APT. By examples for diverse energy and momentum transfer values we show the property of better convergence for the APT modified QCD expansion.

It is shown that in the APT analysis the three-loop contribution (~ α 3 s) is numerically inessential. This gives raise a hope for practical solution of the well-known problem of non-satisfactory convergence of QFT perturbation series due to its asymptotic nature. Our next result is that a usual perturbative analysis of time-like events is not adequate at s ≤ 2 GeV2. In particular, this relates to τ decay.

Then, for the “high” (f = 5) region it is shown that the common NLO, NLLA perturbation approximation widely used there (at 10 GeV≲√s≲170 GeV) yields a systematic theoretic negative error of a couple per cent level for the ά (2) s values. This results in a conclusion that the ά s(M 2 Z) value averaged over the f = 5 data appreciably differs 〈ά s(M 2 Z)〉f=5 ≃ 0.124 from the currently popular “world average” (= 0.118 ).

Keywords

Power Expansion Analytic Perturbation Theory Loop Case Lambert Function Adler Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.V. Shirkov, Theor. Math. Phys. 127, 409 (2001); JINR preprint E2-2000-298; hep-ph/0012283; see also JINR preprint E2-2000-46; hep-ph/0003242.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    D.V. Shirkov, Eur. Phys. J. C 22. 331 (2001).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000).Google Scholar
  4. 4.
    N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of Quantized Fields, (Wiley & Intersc. New York, 1959,1980).Google Scholar
  5. 5.
    N.N. Bogoliubov and D.V. Shirkov, Quantum Fields, (Benjamin/Cummings, Reading, 1983).zbMATHGoogle Scholar
  6. 6.
    Yu.L. Dokshitzer and D.V. Shirkov, Z. Phys. C 67, 449 (1995).CrossRefADSGoogle Scholar
  7. 7.
    A. Radyushkin, Dubna JINR preprint E2-82-159 (1982); see also JINR Rapid Comm. No.4[78]-96, 9 (1996); hep-ph/9907228.Google Scholar
  8. 8.
    N.V. Krasnikov, A.A. Pivovarov, Phys. Lett. B 116, 168 (1982).CrossRefADSGoogle Scholar
  9. 9.
    K.A. Milton and I.L. Solovtsov, Phys. Rev. D 55, 5295 (1997).CrossRefADSGoogle Scholar
  10. 10.
    A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A 10, 235 (1995).CrossRefADSGoogle Scholar
  11. 11.
    L. Alkofer and L. von Smekal, Phys. Repts. 353, 281 (2001).zbMATHCrossRefADSGoogle Scholar
  12. 12.
    B. Schrempp and F. Schrempp, Z. Physik C 6, 7 (1980).CrossRefADSGoogle Scholar
  13. 13.
    A.P. Bakulev, A.V. Radyushkin and N.G. Stefanis, Phys. Rev. D 62, 113001 (2000).CrossRefADSGoogle Scholar
  14. 14.
    D. S. Kourashev and B. A. Magradze, Report RMI-2001-18; hep-ph/0104142.Google Scholar
  15. 15.
    B. Magradze, Preprint JINR, E2-2000-222; hep-ph/0010070.Google Scholar
  16. 16.
    D.V. Shirkov and I.L. Solovtsov, JINR Rapid Comm. No.2[76]-96, pp 5–10; hepph/9604363.Google Scholar
  17. 17.
    D.V. Shirkov and I.L. Solovtsov, Phys.Rev.Lett. 79, 1209 (1997).CrossRefADSGoogle Scholar
  18. 18.
    D.V. Shirkov and I.L. Solovtsov, Phys.Lett. B 442, 344 (1998).CrossRefADSGoogle Scholar
  19. 19.
    D.V. Shirkov, TMP 119 (1999) 438–447, hep-th/9810246.zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    I.L. Solovtsov and D.V. Shirkov, Theor. Math. Phys. 120, 1220 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    D.V. Shirkov, Lett. Math. Phys. 48, 135 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    K.A. Milton and O.P. Solovtsova, Phys. Rev. D 57, 5402 (1998).CrossRefADSGoogle Scholar
  23. 23.
    A.I. Alekseev, hep-ph/0105338.Google Scholar
  24. 24.
    K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, Phys. Lett. B 439, 421 (1998).CrossRefADSGoogle Scholar
  25. 25.
    K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, Phys. Rev. D 60, 016001 (1999).CrossRefADSGoogle Scholar
  26. 26.
    K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, Phys. Rev. D 64, 016005 (2001).CrossRefADSGoogle Scholar
  27. 27.
    K.A. Milton, I.L. Solovtsov and O.P. Solovtsova, hep-ph/0111197.Google Scholar
  28. 28.
    Delphi Collaboration, “Consistent measurements of α s from...”, CERN-EP/99-133.Google Scholar
  29. 29.
    Z. Bethke, J. Phys. G 26, R27 (2000); Preprint MPI-PhE/2000-07; hepex/0004021.CrossRefADSGoogle Scholar
  30. 30.
    Z. Bethke, “QCD at LEP”, (Oct 11, 2000) in http://cern.wed.cern.ch/CERN/Announcement/2000/LEPFest/.
  31. 31.
    F.J. Dyson, Phys. Rev. 85, 631 (1952).zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    D.V. Shirkov, Lett. Math. Phys. 1, 179 (1976); Lett. Nuovo Cim. 18, 452 (1977).CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    L.N. Lipatov, Sov. Phys. JETP 45, 216 (1977).MathSciNetADSGoogle Scholar
  34. 34.
    D.I. Kazakov and D.V. Shirkov, Fortsch. der Physik 28, 456 (1980).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Dmitry V. Shirkov
    • 1
  1. 1.Bogoliubov LaboratoryJINRDubnaRussia

Personalised recommendations