Advertisement

Perturbative Logarithms and Power Corrections in QCD Hadronic Functions.

A Unifying Approach
  • Nikolaos G. Stefanis
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

I present a unifying scheme for hadronic functions that comprises logarithmic corrections due to gluon emission in perturbative QCD, as well as power-behaved corrections of nonperturbative origin. The latter are derived by demanding that perturbatively resummed partonic observables should be analytic in the whole Q 2-plane if they are to be related to physical observables measured in experiments. I also show phenomenological consequences of this approach. The focus is on the electromagnetic pion form factor to illustrate both effects, Sudakov logarithms and power corrections in leading order of Λ2 QCD/Q 2. The same approach applied to the inclusive Drell-Yan cross section enables us to perform an absolutely normalized calculation of the leading power correction in b 2Λ2 QCD (b being the impact parameter), which after exponentiation, gives rise to a nonperturbative Sudakov-type contribution that provides enhancement rather than suppression, hence partly counteracting the perturbative Sudakov suppression.

Keywords

Form Factor Transverse Momentum Power Correction Pion Form Factor Sudakov Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981); ibid. B 197, 446 (1982).CrossRefADSGoogle Scholar
  2. 2.
    G.P. Korchemsky, G. Sterman, Nucl. Phys. B 437, 415 (1995).CrossRefADSGoogle Scholar
  3. 3.
    J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985).CrossRefADSGoogle Scholar
  4. 4.
    A.I. Karanikas, N.G. Stefanis, Phys. Lett. B 504, 225 (2001).CrossRefADSGoogle Scholar
  5. 5.
    N.G. Stefanis, Eur. Phys. J.direct C 7, 1 (1999).Google Scholar
  6. 6.
    D.V. Shirkov, Eur. Phys. J. C 22, 331 (2001); Theor. Math. Phys. 127, 409 (2001).zbMATHCrossRefADSGoogle Scholar
  7. 7.
    D.V. Shirkov and I.L. Solovtsov, Theor. Math. Phys. 120 (1999) 1210.MathSciNetGoogle Scholar
  8. 8.
    D.V. Shirkov, I. L. Solovtsov, Phys. Rev. Lett. 79, 1209 (1997).CrossRefADSGoogle Scholar
  9. 9.
    N.G. Stefanis, W. Schroers, H.-Ch. Kim, Eur. Phys. J. C 18, 137 (2000).CrossRefADSGoogle Scholar
  10. 10.
    H.-n. Li, G. Sterman, Nucl. Phys. B 381, 129 (1992).CrossRefADSGoogle Scholar
  11. 11.
    S.J. Brodsky, T. Huang, G.P. Lepage, In: Banff Summer Institute on Particles and Fields (1981), ed. by A.Z. Capri and A.N. Kamal (Plenum Press, New York 1983) pp. 143–199.Google Scholar
  12. 12.
    M. Praszalowicz, A. Rostworowski, Phys. Rev. D 64, 074003 (2001); hepph/0111196.CrossRefADSGoogle Scholar
  13. 13.
    G.P. Korchemsky, A.V. Radyushkin, Nucl. Phys. B 283, 342 (1987).CrossRefADSGoogle Scholar
  14. 14.
    G.P. Korchemsky, Phys. Lett. B 217, 330 (1989); ibid. B 220, 629 (1989).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    G. Gellas, A.I. Karanikas, C.N. Ktorides, N.G. Stefanis, Phys. Lett. B 412, 95 (1997); A.I. Karanikas, C.N. Ktorides, N.G. Stefanis, S.M.H. Wong, Phys. Lett. B 455, 291 (1999).CrossRefADSGoogle Scholar
  16. 16.
    J. Kodaira, L. Trentadue, Phys. Lett. B 112, 66 (1982).CrossRefADSGoogle Scholar
  17. 17.
    B. Melić, B. Nižić, K. Passek, Phys. Rev. D 60, 074004 (1999).CrossRefADSGoogle Scholar
  18. 18.
    S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 28, 228 (1982).CrossRefADSGoogle Scholar
  19. 19.
    C.N. Brown et al., Phys. Rev. D 8, 92 (1973).CrossRefADSGoogle Scholar
  20. 20.
    C.J. Bebek et al., Phys. Rev. D 13, 25 (1976); ibid. D 17, 1693 (1978).CrossRefADSGoogle Scholar
  21. 21.
    A.V. Radyushkin, Few Body Syst. Suppl. 11, 57 (1999); A.P. Bakulev, A.V. Radyushkin, N.G. Stefanis, Phys. Rev. D 62, 113001 (2000).Google Scholar
  22. 22.
    A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Lett. B508, 279 (2001); hepph/0104290.ADSGoogle Scholar
  23. 23.
    S. Agaev, hep-ph/9611215; Mod. Phys. Lett. A 13, 2637 (1998); Eur. Phys. J. C 1, 321 (1998).CrossRefADSGoogle Scholar
  24. 24.
    A.V. Radyushkin, JINR preprint E2-82-159, JINR Rapid Communications 4[78]-96, 9 (1982).Google Scholar
  25. 25.
    N.V. Krasnikov, A.A. Pivovarov, Phys. Lett. B 116, 168 (1982).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nikolaos G. Stefanis
    • 1
  1. 1.Institut für Theoretische Physik IIRuhr-Universität BochumBochumGermany

Personalised recommendations