Advertisement

Gauge Theories on Noncommutative Spaces

  • Julius Wess
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

A formalism is presented where gauge theories for nonabelian groups can be constructed on a noncommutative algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Heisenberg, Gesammelte Werke, Teil II, Springer-Verlag.Google Scholar
  2. 2.
    H.S. Snyder, Quantized Space-Time, Phys.Rev. 71, 38 (1947).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    B. Jurčo, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C 17, 521 (2000).CrossRefADSzbMATHGoogle Scholar
  4. 4.
    J. Madore, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C 16, 161 (2000).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    B. Jurčo, P. Schupp, Eur. Phys. J. C 14, 367 (2000).CrossRefADSGoogle Scholar
  6. 6.
    B. Jurčo, P. Schupp and J. Wess, Nucl. Phys. B 584, 784 (2000).CrossRefADSzbMATHGoogle Scholar
  7. 7.
    N. Seiberg and E. Witten, J. High Energy Phys. 9909, 032 (1999).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Dimakis, J. Madore, J. Math. Phys. 37, 4647 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    J. Madore, An Introduction to Noncommutative Differential Geometry and it Physical Applications, 2nd Edition (Cambridge University Press, 1999).Google Scholar
  10. 10.
    J. Wess, q-deformed Heisenberg Algebras, in H. Gausterer, H. Grosse and L. Pittner, eds., Proceedings of the 38. Internationale Universitätswochen für Kern-und Teilchenphysik, no. 543 in Lect. Notes in Phys., Springer-Verlag, 2000, Schladming, January 1999, math-ph/9910013.Google Scholar
  11. 11.
    H. Weyl, Z. Physik 46, 1 (1927), Quantenmechanik und Gruppentheorie; The theory of groups and quantum mechanics, Dover, New-York (1931), translated from Gruppentheorie und Quantenmechanik, Hirzel Verlag, Leipzig (1928).CrossRefADSGoogle Scholar
  12. 12.
    J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Wess and B. Zumino, Nucl. Phys. Proc. Suppl. 18B, 302 (1991).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    W. Behr, N.G. Deshpande, G. Duplancic, P. Schupp, J. Trampetic and J. Wess, hepph/0202121.Google Scholar
  15. 15.
    X. Calmet, B. Jurco, P. Schupp, J. Wess, M. Wohlgenannt, Eur. Phys. J. C 23, 363 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    B. Jurco, P. Schupp and J. Wess, hep-th/0106110.Google Scholar
  17. 17.
    B. Jurco, L. Möller, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C 21, 383 (2001).zbMATHCrossRefADSGoogle Scholar
  18. 18.
    B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 604, 148 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    B. Jurco, P. Schupp, J. Wess, Mod. Phys. Lett. A 16, 343 (2001).CrossRefGoogle Scholar
  20. 20.
    I. Hinchliffe, N. Kersting, hep-ph/0205040.Google Scholar
  21. 21.
    D. Brace, B.L. Cerchiai, A.F. Pasqua, U. Varadarajan, B. Zumino, J. High Energy Phys. 0106, 047 (2001).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    A.A. Bichl, J.M. Grimstrup, L. Popp, M. Schweda, R. Wulkenhaar, hep-th/0102103.Google Scholar
  23. 23.
    A.A. Bichl, J.M. Grimstrup, H. Grosse, L. Popp, M. Schweda, R. Wulkenhaar, J. High Energy Phys. 0106, 013 (2001).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    J.M. Grimstrup, R. Wulkenhaar, hep-th/0205153.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Julius Wess
    • 1
    • 2
  1. 1.Sektion Physik der Ludwig-Maximilians-UniversitätMünchen
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)München

Personalised recommendations