Physics of the Monopoles in QCD

  • Valentine I. Zakharov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)


We discuss implications of the recent measurements of the non-Abelian action density associated with the monopoles condensed in the confining phase of gluodynamics. The radius of the monopole determined in terms of the action was found to be small numerically. As far as the condensation of the monopoles is described in terms of a scalar field, a fine tuning is then implied. In other words, a hierarchy exists between the self energy of the monopole and the temperature of the confinement-deconfinement phase transition. The ratio of the two scales is no less than a factor of 10. Moreover, we argue that the hierarchy scale can well eventually extend to a few hundred GeV on the ultraviolet side. The corresponding phenomenology is discussed, mostly within the polymer picture of the monopole condensation.


Partition Function Lattice Spacing Wilson Loop String Tension Physical Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Nambu, Phys. Rev. D 10, 3262 (1974); G.’ t Hooft, in High Energy Physics, Editorici Compositori, Bologna, (1975); S. Mandelstam, Phys. Rep. C 23, 516 (1976).ADSGoogle Scholar
  2. 2.
    M.N. Chernodub, M.I. Polikarpov, in “Cambridge 1997, Confinement, duality, and nonperturbative aspects of QCD”, p. 387; hep-th/9710205; T. Suzuki, Prog. Theor. Phys. Suppl. 131, 633 (1998); A. Di Giacomo, Prog. Theor. Phys. Suppl. 131, 161 (1998).Google Scholar
  3. 3.
    M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov, Nucl. Phys. B 592, 107 (2000); Nucl. Phys. B 600, 163 (2001).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    M.N. Chernodub, F.V. Gubarev, M.I. Polikarpov, V.I. Zakharov, Phys. Atom. Nucl. 64, 561 (2001).CrossRefADSGoogle Scholar
  5. 5.
    V.G. Bornyakov et al, hep-lat/0103032; V.A. Belavin, M.I. Polikarpov, A.I. Veselov, hep-lat/0110011.Google Scholar
  6. 6.
    K. Symanzik, in Local Quantum Theory, (1969) Varenna International School of Physics, Course XLV, p. 152.Google Scholar
  7. 7.
    M. Stone, P.R. Thomas, Phys. Rev. Lett. 41, 351 (1978); S. Samuel, Nucl. Phys. B 154, 62 (1979).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C. A. De Carvalhom, S. Caracciolo, J. Frohlich, Nucl. Phys. B 215, 209 (1983).CrossRefADSGoogle Scholar
  9. 9.
    A.M. Polyakov, Phys. Lett. B 59, 82 (1975).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    H. Shiba, T. Suzuki, Phys. Lett. B 343, 315 (1995).CrossRefADSGoogle Scholar
  11. 11.
    T. Suzuki, H. Shiba, Phys. Lett. B 351, 519 (1995); S. Kato et al, Nucl. Phys. B 520, 323 (1998); M.N. Chernodub et al, Phys. Rev. D 62, 094506 (2000).CrossRefADSGoogle Scholar
  12. 12.
    J. Ambjorn, B. Durhuus, Th. Johnsson, Quantum Geometry, Cambridge University Press (1997), Cambridge Monographs on Mathematical Physics.Google Scholar
  13. 13.
    G. Parisi, Statistical Field Theory, Addison-Wesley, (1988).Google Scholar
  14. 14.
    F.V. Gubarev, V. I. Zakharov, Nucl. Phys. Proc. Suppl. 106, 622 (2002); Int. J. Mod. Phys. A 17, 157 (2002).CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    T. Suzuki, I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990); G.S. Bali, V. Bornyakov, M. Mueller-Preussker, K. Schilling, Phys. Rev. D 54, 2863 (1996).CrossRefADSGoogle Scholar
  16. 16.
    V. Bornyakov et al, hep-lat/0111042.Google Scholar
  17. 17.
    V. Bornyakov, M. Muller-Preussker, hep-lat/0110209.Google Scholar
  18. 18.
    T.L. Ivanenko, A.V. Pochinsky, M.I. Polikarpov, Phys. Lett. B 252, 631 (1990); S. Kitahara, Y. Matsubara, T. Suzuki, Progr. Theor. Phys. 93, 1 (1995); A. Hart, M. Teper, Phys. Rev. D 58, 014504 (1998).CrossRefADSGoogle Scholar
  19. 19.
    K. Ishiguro, Y. Nakatani, T. Suzuki, Prog. Theor. Phys. Suppl. 138, 35 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Valentine I. Zakharov
    • 1
  1. 1.Max-Planck Institut für PhysikMünchenGermany

Personalised recommendations