Gravitational Wave Bursts from Brane World Neutrino Oscillations During Supernova Collapse

  • Herman J. Mosquera Cuesta
  • Amol S. Dighe
  • André C. de Gouvêa
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)


In braneworld-like solutions of the hierarchy problem gravitons and right-handed (sterile) neutrinos are in principle the unique non-standard model fields allowed to propagate into the bulk, thus their coupling is naturally expected. Since active- to-sterile neutrino oscillations can take place during the core bounce of a supernova collapse, then gravitational waves must be produced over the oscillation length through anisotropic neutrino flow. Because the oscillation feeds mass-energy up into (or takes it out of) the target species, the large mass-squared difference between species makes a huge amount of energy to be given off as gravity waves, which is larger than from neutrino convection and cooling, or quadrupole moments of neutron star matter. The strengthness of these bursts would turn them the more sure supernova gravitational- wave signal detectable by interferometers, for distances out to the VIRGO cluster of galaxies.


Neutrino Oscillation Sterile Neutrino Supernova Explosion Brane World VIRGO Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998).CrossRefADSGoogle Scholar
  2. 2.
    I. Antoniadis, et al., Phys. Lett. B 436, 257 (1998).CrossRefADSGoogle Scholar
  3. 3.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004 (1999).CrossRefADSGoogle Scholar
  4. 4.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R. N. Mohapatra, A. Perez-Lorenzana, Nucl. Phys. B 576, 466 (2000). See also D.O. Caldwell, R. N. Mohapatra, S. J. Yellin, Phys. Rev. Lett 87, 041601 (2001). R. N. Mohapatra, A. Perez-Lorenzana, C. S. Pires, Phys. Lett. B 491, 143 (2000).CrossRefADSGoogle Scholar
  7. 7.
    C. Hanhart, et al., Nucl. Phys. B 595, 335 (2001). See also C. Hanhart et al., astro-ph/0102063 (2001).CrossRefADSGoogle Scholar
  8. 8.
    S. Hannestad, G. G. Raffelt, Phys. Rev. Lett. 87, 051301 (2001).CrossRefADSGoogle Scholar
  9. 9.
    G. Baremboim, et al., hep-ph/0108199, 30 Aug. (2001).Google Scholar
  10. 10.
    H. J. Mosquera Cuesta, Ap. J. Lett. 544, L61 (2000).CrossRefADSGoogle Scholar
  11. 11.
    Y. Grossman, M. Neubert, Phys. Lett. B 474, 361 (2000).zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    H. J. Mosquera Cuesta, Back-reaction of Einstein’s gravitational waves as the origin of natal pulsars kicks, Phys. Rev. D., Rapid Comm., in press (2001).Google Scholar
  13. 13.
    A. Burrows, J. Hayes, Phys. Rev. Lett. 76, 352 (1996).CrossRefADSGoogle Scholar
  14. 14.
    A. Burrows, et al., Astrophys. J. 450, 830 (1995).CrossRefADSGoogle Scholar
  15. 15.
    H.-Th. Janka, E. Müller, Astron. Astrophys. 306, 167 (1996). See also: Astron. Astrophys. 290, 290 (1994).ADSGoogle Scholar
  16. 16.
    E. Müller, H.-Th. Janka, Ast. Astrophys. 317, 140 (1997).ADSGoogle Scholar
  17. 17.
    R. I. Epstein, MNRAS 188, 305 (1978).ADSGoogle Scholar
  18. 18.
    M. Patel, G. M. Fuller,What are sterile neutrinos good for?, report hep-ph/0003034 (v1) 5 Mar (2000).Google Scholar
  19. 19.
    H. Nunokawa, Phys. D. 56, 1704 (1997), and Nucl. Phys. Proc. Suppl. 95, 193 (2000).ADSGoogle Scholar
  20. 20.
    S. Pakvasa, Discussion section on Adriatic Conference on Particle Physics in the New Millenium, Dubrovnik, Croatia, Sept 4–14 (2001).Google Scholar
  21. 21.
    J. A. Pons, et al., Phys. Rev. Lett. 86, 5223 (2001).CrossRefADSGoogle Scholar
  22. 22.
    S. Nazin, M. Postnov, Astron. Astrophys. 317, L79 (1997).ADSGoogle Scholar
  23. 23.
    A. G. Lyne, D. R. Lorimer, Nature 369, 127 (1994).CrossRefADSGoogle Scholar
  24. 24.
    I. F. Mirabel, et al., Nature 413, 139–141 (2001).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Herman J. Mosquera Cuesta
    • 1
    • 2
    • 3
  • Amol S. Dighe
    • 4
  • André C. de Gouvêa
    • 4
  1. 1.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Centro Brasileiro de Pesquisas FísicasLaboratório de Cosmologia e Física Experimental de Altas EnergiasRio de JaneiroBrazil
  3. 3.Centro Latinoamericano de Física (CLAF)Botafogo, Rio de JaneiroBrazil
  4. 4.CERN Theory DivisionGenéve 23Suisse

Personalised recommendations