Advertisement

Towards Adelic Noncommutative Quantum Mechanics

  • Goran S. Djordjević
  • Ljubiša Nešić
Conference paper
  • 374 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 616)

Abstract

A motivation of using noncommutative and nonarchimedean geometry on very short distances is given. Besides some mathematical preliminaries, we give a short introduction in adelic quantum mechanics. We also recall to basic ideas and tools embedded in q-deformed and noncommutative quantum mechanics. A rather fundamental approach, called deformation quantization, is noted. A few relations between noncommutativity and nonarchimedean spaces as well as similarities between corresponding quantum theories on them are pointed out. An extended Moyal product in a proposed form of adelic noncommutative quantum mechanics is considered. We suggest some question for future investigations.

Keywords

Star Product Deformation Quantization Ultrametric Space Canonical Commutation Relation Standard Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Behr, N. G. Desphande, G. Duplancic, P. Shupp, J. Trampetic, J. Wess, The Z → γγ, gg Decays in the Noncommutative Standard Model, hep-ph/0202121.Google Scholar
  2. 2.
    I.Ya. Aref'eva and I. V. Volovich, Phys. Lett. B268, 179 (1991).ADSMathSciNetGoogle Scholar
  3. 3.
    I.V. Volovich, Class. Quantum Grav. 4, L83 (1987).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    V.S. Vladimirov, I.V. Volovich and E.I. Zelenov, p-Adic Analysis and Mathematical Physics, (World Scientific, Singapore, 1994).Google Scholar
  5. 5.
    L. Brekke and P.G.O. Freund, Phys. Rep. 233, 1 (1993).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    V.S. Vladimirov and I.V. Volovich, Comm. Math. Phys. 123, 659 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    B. Dragovich, Int. J. Mod. Phys. A10, 2349 (1995).ADSMathSciNetGoogle Scholar
  8. 8.
    G. S. Djordjevic, B. Dragovich, Lj. D. Nesic, I. V. Volovich, p-Adic and Adelic Minisuperspace Quantum Cosmology, gr-qc/0105050.Google Scholar
  9. 9.
    R. Jackiw, Physical instances of noncommuting coordinates, hep-th/0110057.Google Scholar
  10. 10.
    S. Waldmann: On the Representation Theory of Deformation Quantization, math.QA/0107112.Google Scholar
  11. 11.
    E.I. Zelenov, J. Math. Phys. 32, 147 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    I.M. Gel'fand, M.I. Graev and I.I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, (Saunders, London, 1966).Google Scholar
  13. 13.
    G.S. Djordjevic, B. Dragovich, Lj. Nešić, Adelic Quantum Mechanics: Nonarchimedean and Noncommutative Aspects, hep-th/0111088.Google Scholar
  14. 14.
    G.S. Djordjević and B. Dragovich, Mod. Phys. Lett. A12, 1455 (1997).ADSGoogle Scholar
  15. 15.
    B.L. Cherchiai, S. Schraml and J. Wess, Int. J. Mod. Phys. B13, 3049 (1997).ADSGoogle Scholar
  16. 16.
    L. Mezincesku, Star operation in Quantum Mechanics, hep-th/0007046.Google Scholar
  17. 17.
    G. Dito, D. Sternheimer, Deformation quantization: genesis, developments and metamorphoses, math.QA/0201168.Google Scholar
  18. 18.
    L.C. Biedenharn, J. Phys. A: Math. Gen. 22, L873 (1989).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    M. Gerstenhaber, D.S. Schack: ‘Algebraic Cohomology and Deformation Theory’,:“Deforamtion Theory of Algebras and Structures and Applications”, ed by M. Hazewinkel, M. Gerstenhaber, (Kluwer, Dordrecht 1988) pp. 13–264.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Goran S. Djordjević
    • 1
    • 2
  • Ljubiša Nešić
    • 1
  1. 1.Department of PhysicsUniversity of NišYugoslavia
  2. 2.Sektion PhysikUniversität MünchenMünchenGermany

Personalised recommendations