Finite Chern-Simons Matrix Model - Algebraic Approach

  • Larisa Jonke
  • Stjepan Meljanac
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)


We analyze the algebra of observables and the physical Fock space of the finite Chern-Simons matrix model. We observe that the minimal algebra of observables acting on that Fock space is identical to that of the Calogero model. Our main result is the identification of the states in the l-th tower of the Chern-Simons matrix model Fock space and the states of the Calogero model with the interaction parameter ν = l + 1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Susskind, The Quantum Hall Fluid and Non-Commutative Chern Simons Theory, hep-th/0101029.Google Scholar
  2. 2.
    A. P. Polychronakos, J. High Energy Phys. 04 (2001) 011.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    S. Hellerman and M. Van Raamsdonk, J. High Energy Phys. 10 (2001) 039.CrossRefADSGoogle Scholar
  4. 4.
    F. Calogero, J. Math. Phys. 10 (1971) 2191, 2197; J. Math. Phys. 12 (1971) 419.CrossRefADSGoogle Scholar
  5. 5.
    D. Karabali and B. Sakita, Phys. Rev. D bf 65 (2002) 075304.Google Scholar
  6. 6.
    T. H. Hansson, J. M. Leinaas and J. Myrheim, Nucl. Phys. B 384 (1992) 559.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    L. Brink, T. H. Hansson, S. Konstein and M. A. Vasiliev, Nucl. Phys. B 401 (1993) 591.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. Iso and S. J. Rey, Phys. Lett. B 352 (1995) 111.CrossRefADSGoogle Scholar
  9. 9.
    A. P. Polychronakos, Phys. Lett. B 264 (1991) 362.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    O. Bergman, J. Brodie and Y. Okawa, The Stringy Quantum Hall Fluid, hepth/0107178.Google Scholar
  11. 11.
    L. Jonke and S. Meljanac, Phys. Lett. B 511 (2001) 276.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    L. Jonke and S. Meljanac, Phys. Lett. B 526 (2002) 149.zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. B. Isakov and J. M. Leinaas, Nucl. Phys. B 463 (1996) 194; J. M. Leinaas, Generalized statistics and the algebra of observables, hep-th/9611167; S. B. Isakov et. al., Phys. Lett. B 430 (1998) 151.Google Scholar
  14. 14.
    A. J. Macfarlane and H. Pfeiffer, J. Math. Phys. 41 (2000) 3192; L. Jonke and S. Meljanac, The algebra of the observables in the Calogero model and in the Chern-Simons matrix model, Phys. Rev. B (2002) to appear.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics, Tokyo University Press 1982.Google Scholar
  16. 16.
    A. P. Polychronakos, Mod. Phys. Lett. A 11 (1996) 1273.zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    A. P. Polychronakos, J. High Energy Phys. 06 (2001) 070.CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    L. Jonke, S. Meljanac, J. High Energy Phys. 01 (2002) 008.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Larisa Jonke
    • 1
  • Stjepan Meljanac
    • 1
  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations