An Overview of the Sources for Electroweak Baryogenesis

  • Tomislav Prokopec
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 616)


After a short review of electroweak scale baryogenesis, we consider the dynamics of chiral fermions coupled to a complex scalar field through the standard Yukawa interaction term at a strongly first order electroweak phase transition. By performing a systematic gradient expansion we can use this simple model to study electroweak scale baryogenesis. We show that the dominant sources for electroweak baryogenesis appear at linear order in the Planck constant ħ. We provide explicit expressions for the sources both in the flow term and in the collision term of the relevant kinetic Boltzmann equation. Finally, we indicate how the kinetic equation sources appear in the fluid transport equations used for baryogenesis calculations.


Minimal Supersymmetric Standard Model Wigner Function Collision Term Chiral Fermion Kinetic Boltzmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuzmin V. A., Rubakov V. A., Shaposhnikov M. E. (1985): On The Anomalous Electroweak Baryon Number Nonconservation In The Early Universe. Phys. Lett. B 155, 36.CrossRefADSGoogle Scholar
  2. 2.
    Shaposhnikov M. E. (1987): Baryon Asymmetry Of The Universe In Standard Electroweak Theory. Nucl. Phys. B 287, 757.CrossRefADSGoogle Scholar
  3. 3.
    Quiros M., Seco M. (2000): Electroweak baryogenesis in the MSSM. Nucl. Phys. Proc. Suppl. 81, 63 [arXiv:hep-ph/9903274].CrossRefADSGoogle Scholar
  4. 4.
    Cohen A. G., Kaplan D. B., Nelson A. E. (1990): Weak Scale Baryogenesis. Phys. Lett. B 245, 561; Cohen A. G., Kaplan D. B., Nelson A. E. (1991): Baryogenesis At The Weak Phase Transition. Nucl. Phys. B 349, 727.CrossRefADSGoogle Scholar
  5. 5.
    Kainulainen K., Prokopec T., Schmidt M. G., Weinstock S. (2001): First principle derivation of semiclassical force for electroweak baryogenesis. JHEP 0106, 031 [arXiv:hep-ph/0105295].CrossRefADSGoogle Scholar
  6. 6.
    Kainulainen K., Prokopec T., Schmidt M. G., Weinstock S. (2002): Semiclassical force for electroweak baryogenesis: Three-dimensional derivation. arXiv:hepph/0202177.Google Scholar
  7. 7.
    Joyce M., Prokopec T., Turok N. (1996): Nonlocal electroweak baryogenesis. Part 2: The Classical regime. Phys. Rev. D 53, 2958 [arXiv:hep-ph/9410282]; Joyce M., Prokopec T., Turok N. (1995): Electroweak baryogenesis from a classical force. Phys. Rev. Lett. 75, 1695 [Erratum-ibid. 75 (1995) 3375] [arXiv:hep-ph/9408339].CrossRefADSGoogle Scholar
  8. 8.
    Cline J. M., Kainulainen K. (2000): A new source for electroweak baryogenesis in the MSSM. Phys. Rev. Lett. 85, 5519 [hep-ph/0002272]; Cline J. M., Joyce M., Kainulainen K. (2000): Supersymmetric electroweak baryogenesis. JHEP 0007, 018 [arXiv:hep-ph/0006119]; ibid. hep-ph/0110031.CrossRefADSGoogle Scholar
  9. 9.
    Cornwall J. M., Jackiw R., Tomboulis E. (1974): Effective Action For Composite Operators. Phys. Rev. D 10, 2428.zbMATHCrossRefADSGoogle Scholar
  10. 10.
    Schwinger J. (1961): J. Math. Phys. 2, 407; Keldysh L. V. (1964): Zh. Eksp. Teor. Fiz. 47, 1515 [Sov. Phys. JETP 20 (1965) 235].zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Chou K., Su Z., Hao B., Yu L. (1985): Equilibrium And Nonequilibrium Formalisms Made Unified. Phys. Rept. 118 1; Calzetta E., Hu B. L. (1988): Nonequilibrium Quantum Fields: Closed Time Path Effective Action, Wigner Function And Boltzmann Equation. Phys. Rev. D 37, 2878.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Kainulainen K., Prokopec T., Schmidt M. G., Weinstock S. (2002): Some aspects of collisional sources for electroweak baryogenesis. arXiv:hep-ph/0201245.Google Scholar
  13. 13.
    Kainulainen K., Prokopec T., Schmidt M. G., Weinstock S. (2002): Quantum Boltzmann equations for electroweak baryogenesis including gauge fields. arXiv:hep-ph/0201293.Google Scholar
  14. 14.
    Kainulainen K., Prokopec T., Schmidt M. G., Weinstock S. (2002): in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tomislav Prokopec
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations