Biopolyesters pp 125-157 | Cite as

Physiology, Regulation, and Limits of the Synthesis of Poly(3HB)

  • Wolfgang Babel
  • Jörg-Uwe Ackermann
  • Uta Breuer
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 71)


The properties of poly(3-hydroxybutyrate) combined with the fact that it can be produced easily by numerous prokaryotes from renewable resources and even from potentially toxic waste products using well-known fermentation processes have generated keen interest in this biopolyester as a substitute for chemo-synthetic petroleum-derived polymers in many applications. However, the high price of poly(3HB) compared with the conventional synthetic materials currently in use has restricted its availability in a wide range of applications. If the economic viability of poly(3HB) production and its competitiveness are to be improved, more must be found out about the phenotypic optimization and the upper limits of bacterial systems as the factory of poly(3HB). In this chapter, two aspects of poly(3HB) are reviewed — poly(3HB) formation as a physiological response to external limitations and overcoming internal bottlenecks, and poly(3HB) as a commercially attractive polyester. From a physiologial viewpoint, the ability to synthesize and degrade poly(3HB) is considered an investment in the future and provides organisms with a selective advantage. Poly(3HB) is presented as a strategic survival polymer, and it is shown that growth-associated synthesis is not as rare as reported. The influence of the efficiency and velocity of cell multiplication and product formation, of poly(3HB) content and of productivity on the overall yield, and finally on the economics of the whole process are discussed and evaluated from the technological or consumer’s point of view. The specific production rate and poly(3HB) content appear to be more important than the yield coefficients.


Poly(3-hydroxybutyrate) Metabolic sequences “Fine” regulation Poly(3HB) cycle Strategic survival polymer Growth-associated synthesis Energy-generating and -consuming synthesis Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Adv Biochem Engin/Biotechnol 41:77CrossRefGoogle Scholar
  2. 2.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  3. 3.
    Steinbüchel A (1991) In: Byrom D (ed) Biomaterials. Stockton Press, New York, p 124Google Scholar
  4. 4.
    Dawes EA, Senior PJ (1973) Adv Microbial Physiol 10:135CrossRefGoogle Scholar
  5. 5.
    Babel W (1992) FEMS Microbiol Rev 103:141CrossRefGoogle Scholar
  6. 6.
    Macrae RM, Wilkinson JF (1958) J Gen Microbiol 19:210Google Scholar
  7. 7.
    Neijssel OM, Tempest DW (1979) Symp Soc Gen Microbiol 29:53Google Scholar
  8. 8.
    Merrick JM, Doudoroff M (1961) Nature 189:890CrossRefGoogle Scholar
  9. 9.
    Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek R (1995) Can J Microbiol 41(Suppl 1):94CrossRefGoogle Scholar
  10. 10.
    Senior PJ, Dawes EA (1973) Biochem J 134:225Google Scholar
  11. 11.
    Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) FEMS Microbiol Lett 52:91CrossRefGoogle Scholar
  12. 12.
    Nishimura T, Saito T, Tomita K (1978) Arch Microbiol 116:21CrossRefGoogle Scholar
  13. 13.
    Williams DR, Anderson AJ, Dawes EA (1993) In: Schlegel HG, Steinbüchel A (eds) Proc Internat Symp Biol Polyhydroxyalkanoates’ 92 (ISBP’92) Göttingen. Golze-Druck, Göttingen, p 387Google Scholar
  14. 14.
    Mothes G, Skinfill Rivera I, Babel W (1997) Arch Microbiol 166:405CrossRefGoogle Scholar
  15. 15.
    Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) FEMS Microbiol Lett 52:259CrossRefGoogle Scholar
  16. 16.
    Moskowitz GJ, Merrick JM (1969) Biochemistry 8:2748CrossRefGoogle Scholar
  17. 17.
    Mothes G, Babel W (1995) Can J Microbiol 41(Suppl 1): 124Google Scholar
  18. 18.
    Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822CrossRefGoogle Scholar
  19. 19.
    Saito T, Fukui T, Ikeda F, Tanaka Y, Tomita K (1977) Arch Microbiol 114:211CrossRefGoogle Scholar
  20. 20.
    Mothes G, Babel W (1994) Arch Microbiol 161:68Google Scholar
  21. 21.
    Bloomfield G, Sandhu G, Carr NG (1969) FEBS Lett 5:246CrossRefGoogle Scholar
  22. 22.
    Ritchie GAF, Senior PJ, Dawes EA (1971) Biochem J 121:309Google Scholar
  23. 23.
    Amos DA, McInerney MJ (1993) Arch Microbiol 159:16CrossRefGoogle Scholar
  24. 24.
    Liebergesell M, Steinbüchel A (1992) Eur J Biochem 209:135CrossRefGoogle Scholar
  25. 25.
    Rehm BHA, Steinbüchel A (1999) Int J Biol Macromol 25:3CrossRefGoogle Scholar
  26. 26.
    Haywood GW, Anderson AJ, Dawes EA (1989) Biotechnol Lett 11:471CrossRefGoogle Scholar
  27. 27.
    Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Macromolecules 20:2988CrossRefGoogle Scholar
  28. 28.
    Doi Y, Tamaki A, Kunioka M, Soga K (1987) J Chem Soc Chem Commun 1635Google Scholar
  29. 29.
    Doi Y, Tamaki A, Kunioka M, Soga K (1988) Appl Microbiol Biotechnol 28:330CrossRefGoogle Scholar
  30. 30.
    Haywood GW, Anderson AJ, Dawes EA (1989) FEMS Microbiol Lett 57:1CrossRefGoogle Scholar
  31. 31.
    Valentin HE, Schönebaum A, Steinbüchel A (1992) Appl Microbiol Biotechnol 36:507CrossRefGoogle Scholar
  32. 32.
    Huisman GW, de Leeuw O, Eggingk G, Witholt B (1989) Appl Environ Microbiol 55:1949Google Scholar
  33. 33.
    Gerngross TU, Martin DP (1995) Proc Natl Acad Sci USA 92:6279CrossRefGoogle Scholar
  34. 34.
    Su L, Lenz RW, Martin DP (2000) Macromolecules (in press) (refer to [99])Google Scholar
  35. 35.
    Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) Nat Biotechnol 15:63CrossRefGoogle Scholar
  36. 36.
    Kraak MN, Smits THM, Kessler B, Witholt B (1997) J Bacteriol 179:4985Google Scholar
  37. 37.
    Braunegg G, Lefebvre G, Genser KF (1998) J Biotechnol 65:127CrossRefGoogle Scholar
  38. 38.
    Kunioka M, Kawagushi Y, Doi Y (1989) Appl Microbiol Biotechnol 30:569CrossRefGoogle Scholar
  39. 39.
    Valentin HE, Zwingmann G, Schönebaum A, Steinbüchel A (1995) Eur J Biochem 227:43CrossRefGoogle Scholar
  40. 40.
    Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Appl Microbiol Biotechnol 40:717CrossRefGoogle Scholar
  41. 41.
    Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Environ Microbiol 56: 3354Google Scholar
  42. 42.
    Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536Google Scholar
  43. 43.
    DeSmet MJ, Eggink GM, Witholt B, Kingma J, Wynberg H (1983) J Bacteriol 154:870Google Scholar
  44. 44.
    Lageveen RG, Huisman GW, Preusting H, Ketelae P, Eggingk G, Witholt B (1988) Appl Environ Microbiol 54:2924Google Scholar
  45. 45.
    Weitzman PDJ (1981) Adv Microbial Physiol 22:185CrossRefGoogle Scholar
  46. 46.
    Müller-Kraft G, Babel W (1986) Biol Rundsch 24:165Google Scholar
  47. 47.
    Belova LL, Sokolov AP, Morgunov IG, Trotsenko YA (1997) Biochemistry 62:71Google Scholar
  48. 48.
    Henderson RA, Jones CW (1997) Arch Microbiol 168:486CrossRefGoogle Scholar
  49. 49.
    Oeding V, Schlegel HG (1973) Biochem J 134:239Google Scholar
  50. 50.
    Tomita K, Saito T, Fukui T (1983) In: Lennon DLF, Stratman FW, Zahlten RN (eds) Biochemistry of metabolic processes. Elsevier Science Publishing, p 353Google Scholar
  51. 51.
    Fukui T, Ito M, Saito T, Tomita K (1987) Biochim Biophys Acta 917:365Google Scholar
  52. 52.
    Belova LL, Trotsenko YA, Sokolov AP, Sidonov IA (1997) FEMS Microbiol Lett 156:275CrossRefGoogle Scholar
  53. 53.
    Belova LL, Sokolov AP, Trotsenko YA (1997) Appl Biochem Microbiol 33:70Google Scholar
  54. 54.
    Jackson FA, Dawes EA (1976) J Gen Microbiol 97:303Google Scholar
  55. 55.
    Mothes G, Ackermann J-U, Babel W (1998) Arch Microbiol 144:62Google Scholar
  56. 56.
    Stouthamer AH (1973) Antonie van Leeuwenhoek 39:545CrossRefGoogle Scholar
  57. 57.
    Van Dijken JP, Harder W (1975) Biotech Bioeng 17:15CrossRefGoogle Scholar
  58. 58.
    Babel W, Brinkmann U, Müller RH (1993) Acta Biotechnol 13:211CrossRefGoogle Scholar
  59. 59.
    Shi H, Shimizu K, Shiraishi M (1997) J Ferment Bioeng 84:579CrossRefGoogle Scholar
  60. 60.
    Braunegg G, Bogensbergen B (1985) Acta Biotechnol 5:339CrossRefGoogle Scholar
  61. 61.
    Wang F, Lee SY (1997) Appl Environ Microbiol 63:3703Google Scholar
  62. 62.
    Jendrossek D, Schirmer A, Schlegel HG (1996) Appl Microbiol Biotechnol 46:451CrossRefGoogle Scholar
  63. 63.
    Jendrossek D (1998) Polym Degrad Stabil 59:317CrossRefGoogle Scholar
  64. 64.
    Hippe H, Schlegel HG (1976) Arch Mikrobiol 56:278Google Scholar
  65. 65.
    Daniel M, Choi JH, Kim JH, Lebeault JM (1992) Appl Microbiol Biotechnol 37:702Google Scholar
  66. 66.
    Kovar J, Matyskova I, Matyska L (1986) Biochim Biophys Acta 871:302Google Scholar
  67. 67.
    Fukui T, Ito M, Tomita K (1982) EurJ Biochem 127:423CrossRefGoogle Scholar
  68. 68.
    Atkinson DE (1966) Ann Rev Biochem 35:85CrossRefGoogle Scholar
  69. 69.
    Knowles JC (1977) Symp Soc Gen Microbiol 27:241Google Scholar
  70. 70.
    Ritchie GAF (1968) PhD thesis, University of HullGoogle Scholar
  71. 71.
    Pries A, Priefert H, Krüger N, Steinbüchel A (1991) J Bacteriol 173:5843Google Scholar
  72. 72.
    Babel W (1986) Acta Biotechnol 6:215CrossRefGoogle Scholar
  73. 73.
    Babel W (1990) Biotech Adv 8:261CrossRefGoogle Scholar
  74. 74.
    Ackermann J-U, Babel W (1997) Appl Microbiol Biotechnol 47:144CrossRefGoogle Scholar
  75. 75.
    Anthony C (1982) The biochemistry of methylotrophs. Academic PressGoogle Scholar
  76. 76.
    Tal S, Okon Y (1985) Can J Microbiol 31:608Google Scholar
  77. 77.
    Macrae RM, Wilkinson JF (1958) Proc R Phys Soc Edin 27:73Google Scholar
  78. 78.
    Schlegel H-G, Gottschalk G, vonBartha R (1961) Nature 191:463CrossRefGoogle Scholar
  79. 79.
    Leonard D, Lindley ND (1998) Microbiology 144:241CrossRefGoogle Scholar
  80. 80.
    Hughes EJ, Bayly RC (1983) J Bacteriol 154:1363Google Scholar
  81. 81.
    Hueting S, Tempest DW (1977) Arch Microbiol 155:73CrossRefGoogle Scholar
  82. 82.
    Byrom D (1987) Tibtech 5:246Google Scholar
  83. 83.
    Babel W, Riis V, Hainich E (1990) Plaste und Kautschuk 37:109Google Scholar
  84. 84.
    Knowles JC (1993) J Med Engin Technol 17:129CrossRefGoogle Scholar
  85. 85.
    Babel W (1997) Bio World 4:16Google Scholar
  86. 86.
    Hilger U, Sattler K, Littkowski U (1991) Zentralbl Mikrobiol 146:83Google Scholar
  87. 87.
    Lee SY (1996) Biotechnol Bioeng 49:1CrossRefGoogle Scholar
  88. 88.
    De Koning GJM, Lemstra PJ (1993) Polymer 34:4089CrossRefGoogle Scholar
  89. 89.
    Lengweiler UD, Fritz MG, Seebach D (1996) Helv Chim Acta 79:670CrossRefGoogle Scholar
  90. 90.
    Seebach D, Fritz MG (1999) Int J Biol Macromol 25:217CrossRefGoogle Scholar
  91. 91.
    Müller RH, Babel W (1988) Acta Biotechnol 8:249CrossRefGoogle Scholar
  92. 92.
    Müller RH, Babel W (1986) Acta Biotechnol 144:62Google Scholar
  93. 93.
    Ackermann J-U, Babel W (1998) Polym Degrad Stabil 59:183CrossRefGoogle Scholar
  94. 94.
    Bitar A, Underhill S (1990) Biotechnol Lett 12:563CrossRefGoogle Scholar
  95. 95.
    Aragao GMF, Lindley ND, Uribelarrea JL, Pareilleux A (1996) Biotechnol Lett 18:937CrossRefGoogle Scholar
  96. 96.
    Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 24:366CrossRefGoogle Scholar
  97. 97.
    Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 24:370CrossRefGoogle Scholar
  98. 98.
    Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334Google Scholar
  99. 99.
    Lee SY (1996) Tibtech 14:431Google Scholar
  100. 100.
    Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Biotechnol Bioeng 55:28CrossRefGoogle Scholar
  101. 101.
    Lee SY, Choi J (1998) Polym Degrad Stabil 59:387CrossRefGoogle Scholar
  102. 102.
    Choi J, Lee SY (1999) Appl Microbiol Biotechnol 51:13CrossRefGoogle Scholar
  103. 103.
    Lee SY, Chang HN (1995) Can J Microbiol 41(Suppl 1):207CrossRefGoogle Scholar
  104. 104.
    Madison LA, Huisman GW (1999) Microbiol Mol Biol Rev 63:21Google Scholar
  105. 105.
    Byrom D (1992) FEMS Microbiol Rev 103:247Google Scholar
  106. 106.
    Hrabak O (1992) FEMS Microbiol Rev 103:251Google Scholar
  107. 107.
    Manchak J, Page WJ (1994) Microbiol 140:953CrossRefGoogle Scholar
  108. 108.
    Kim SW, Kim P, Lee HS, Kim JH (1996) Biotechnol Lett 18:25CrossRefGoogle Scholar
  109. 110.
    Wendlandt K-D, Jeschorek M, Helm J, Stottmeister U (1998) Polym Degrad Stabil 59:191CrossRefGoogle Scholar
  110. 111.
    Kim BS, Chang HN, Lee SY (1992) Biotechnol Lett 14:811CrossRefGoogle Scholar
  111. 112.
    Choi JI, Lee SY, Han K (1998) Appl Environ Microbiol 64:4897Google Scholar
  112. 113.
    Wang F, Lee SY (1998) Biotechnol Bioeng 58:325CrossRefGoogle Scholar
  113. 114.
    Ackermann J-U, Mothes G, Babel W (1999) ISEB’ 99 Meeting Biopolymers Leipzig (in press)Google Scholar
  114. 115.
    Senior PJ, Beech GA, Ritchie GA, Dawes EA (1972) Biochem J 128:1193Google Scholar
  115. 116.
    Wilkinson JF, Munro AS (1967) In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds) Microbial physiology and continuous culture. HMSO, London, p 173Google Scholar
  116. 117.
    Morinaga Y, Yamanaka S, Ishizaki A, Hirose Y (1978) Agric Biol Chem 42:439Google Scholar
  117. 118.
    Siegel RS, Ollis DF (1984) Biotechnol Bioeng 26:764CrossRefGoogle Scholar
  118. 119.
    Duchars MG, Attwood MM (1989) J Gen Microbiol 135:787Google Scholar
  119. 120.
    Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Appl Environ Microbiol 56:2093Google Scholar
  120. 121.
    Egli T (1991) Antonie van Leeuwenhoek 60:225CrossRefGoogle Scholar
  121. 122.
    de Hollander JA (1993) Antonie van Leeuwenhoek 63:375CrossRefGoogle Scholar
  122. 123.
    Park J-S, Lee YH (1996) J Ferment Bioeng 81:197CrossRefGoogle Scholar
  123. 124.
    Yamane T, Fukunaga M, Lee YW (1996) Biotechnol Bioeng 50:197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Wolfgang Babel
    • 1
  • Jörg-Uwe Ackermann
    • 2
  • Uta Breuer
    • 1
  1. 1.UFZ Umweltforschungszentrum Leipzig-HalleSektion UmweltmikrobiologieLeipzigGermany
  2. 2.SIAB Sächsisches Institut für Angewandte Biotechnologie e.V. an der Universität LeipzigLeipzigGermany

Personalised recommendations