Biopolyesters pp 159-182 | Cite as

Production of Microbial Polyesters: Fermentation and Downstream Processes

  • B. Kessler
  • R. Weusthuis
  • B. Witholt
  • G. Eggink
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 71)


Poly(3-hydroxyalkanoates) (PHAs) constitute a large and versatile family of polyesters produced by various bacteria. PHAs are receiving considerable attention because of their potential as renewable and biodegradable plastics, and as a source of chiral synthons since the monomers are chiral. Industrial PHA production processes have been developed for poly(3-hydroxybutyrate) (poly(3HB)) and poly(3-hydroxybutyrate-co-3-valerate) (poly(3HB-co-3HV). More than 100 other poly(3HAmcl)s, characterized by monomers of medium chain length, have been identified in the past two decades. These monomers typically contain 6–14 carbon atoms, are usually linked via 3-hydroxy ester linkages, but can occasionally also exhibit 2-, 4-, 5-, or 6-hydroxy ester linkages. Such polyesters are collectively referred to as medium chain length PHAs poly(3HAmcl)s.


PHA Polyester Fermentation Downstream process Economics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lemoigne M (1926) Bull Soc Chem Biol 8:770Google Scholar
  2. 2.
    Lee SY (1996) Biotechnol Bioeng 49:1CrossRefGoogle Scholar
  3. 3.
    Sasikala C, Ramana CV (1996) Biodegradable polyesters. In: Neidleman SL, Laskin AI (eds) Advances in applied microbiology. Academic Press, San Diego, p 97Google Scholar
  4. 4.
    Steinbüchel A (1991) Polyhydroxyalkanoic acid. In: Byrom D (ed) Biomaterials. Novel materials from biological sources. Macmillan, Basingstoke, p 123Google Scholar
  5. 5.
    Merrick JM, Doudoroff M (1964) J Bacteriol 88:60Google Scholar
  6. 6.
    de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) J Bacteriol 154:870Google Scholar
  7. 7.
    Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219Google Scholar
  8. 8.
    Lenz RW, Kim YB, Fuller RC (1992) FEMS Microbiol Rev 103:207CrossRefGoogle Scholar
  9. 9.
    Ohashi T, Hasegawa J (1992) D(-)-b-Hydroxycarboxylic acids as raw materials for captopril and b-lactams. In: ai]Collins AN, Sheldrake GN, Crosby J (eds) Chirality in industry. ZENECA Specialties, Manchester, UK, p 269Google Scholar
  10. 10.
    Lageveen R, Witholt, B (1986) European Patent, US Patent; Witholt B, Eggink G, Huisman GW (1992) US PatentGoogle Scholar
  11. 11.
    Byrom D (1992) FEMS Microbiol Rev 103:247Google Scholar
  12. 12.
    Schlegel HG, Gottschalk G (1965) Biochem Zeitung 342:249Google Scholar
  13. 13.
    Byrom D (1990) Industrial production of copolymer from Alcaligenes eutrophus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, p 113Google Scholar
  14. 14.
    Hänggi UJ (1990) Pilot scale production of poly(3HB) with Alcaligenes latus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, p 65Google Scholar
  15. 15.
    Hrabak O (1992) FEMS Microbiol Rev 103:251Google Scholar
  16. 16.
    Babel W (1992) FEMS Microbiol Rev 103:141CrossRefGoogle Scholar
  17. 17.
    Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 23:322CrossRefGoogle Scholar
  18. 18.
    Suzuki T, Yamane T, Shimizu S (1986) Appl Microbiol Biotechnol 24:366CrossRefGoogle Scholar
  19. 19.
    Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Appl Environ Microbiol 58:3574Google Scholar
  20. 20.
    Yamane T, Chen XF, Ueda S (1996) Appl Environ Microbiol 62:380Google Scholar
  21. 21.
    Mineki S, Fukutome N, Oinuma N, Nagashima H, Iida M (1997) Macromolecules 30: 319CrossRefGoogle Scholar
  22. 22.
    Kim SW, Kim P, Lee HS, Kim JH (1996) Biotechnol Lett 18:25CrossRefGoogle Scholar
  23. 23.
    Shah NN, Hanna ML, Taylor RT (1996) Biotechnol Bioeng 49:161CrossRefGoogle Scholar
  24. 24.
    Page WJ, Knosp O (1989) Appl Environ Microbiol 55:1334Google Scholar
  25. 25.
    Page WJ (1989) Appl Microbiol Biotechnol 31:329CrossRefGoogle Scholar
  26. 26.
    Chen GQ, Page WJ (1994) Biotechnol Lett 16:155CrossRefGoogle Scholar
  27. 27.
    Page WJ, Manchak J, Rudi B (1992) Appl Environ Microbiol 58:2866Google Scholar
  28. 28.
    Page WJ, Cornish A (1993) Appl Environ Microbiol 59:4236Google Scholar
  29. 29.
    Tanaka K, Katamune K, Ishizaki A (1993) Biotechnol Lett 15:1217CrossRefGoogle Scholar
  30. 30.
    Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Appl Microbiol Biotechnol 39:443CrossRefGoogle Scholar
  31. 31.
    Steinbüchel A, Schmack G (1995) J Environ Polymer Degradation 3:243CrossRefGoogle Scholar
  32. 32.
    Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Int J Biol Macromol 11:49CrossRefGoogle Scholar
  33. 33.
    Suzuki T, Tsygankov AA, Miyake J, Tokiwa Y, Asada Y (1995) Biotechnol Lett 17:395CrossRefGoogle Scholar
  34. 34.
    Schlegel HG, Gottschalk G, von Bartha R (1961) Nature 191:463CrossRefGoogle Scholar
  35. 35.
    Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Biotechnol Bioeng 45:268CrossRefGoogle Scholar
  36. 36.
    Miyake M, Erata M, Asada Y (1996) J Ferment Bioeng 82:512CrossRefGoogle Scholar
  37. 37.
    Maness PC, Weaver PF (1994) Appl Biochem Biotechnol 45-6:395CrossRefGoogle Scholar
  38. 38.
    Poirier Y (1999) Curr Opin Biotechnol 10:181CrossRefGoogle Scholar
  39. 39.
    van der Leij FR, Witholt B (1995) Can J Microbiol 41:222Google Scholar
  40. 40.
    Riesmeier J, Kossmann J, Trethewey R, Heyer A, Landschutze V, Willmitzer L (1998) Polym Degrad Stabil 59:383CrossRefGoogle Scholar
  41. 41.
    Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl Environ Microbiol 54:2924Google Scholar
  42. 42.
    Preusting H, Nijenhuis A, Witholt B (1990) Macromolecules 23:4220CrossRefGoogle Scholar
  43. 43.
    Huijberts GNM, de Rijk TC, de Waard P, Eggink G (1995) J Bacteriol 176:1661Google Scholar
  44. 44.
    de Waard P, van der Wal H, Huijberts GNM, Eggink G (1993) J Biol Chem 268:157Google Scholar
  45. 45.
    Casini E (1997) J Environ Polymer Degrad 5:153Google Scholar
  46. 46.
    Kellerhals MB (1999) PhD thesis, ETH Zürich, SwitzerlandGoogle Scholar
  47. 47.
    Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536Google Scholar
  48. 48.
    Kellerhals MB, Kessler B, Witholt B (1999) Biotechnol Bioeng 62:306–315CrossRefGoogle Scholar
  49. 49.
    Preusting H, van Houten R, Hoefs A, Kool van Langenberghe E, Favre-Bulle O, Witholt B (1993) Biotechnol Bioeng 41:550CrossRefGoogle Scholar
  50. 50.
    Preusting H, Hazenberg W, Witholt B (1993) Enzyme Microb Technol 15:311CrossRefGoogle Scholar
  51. 51.
    Hazenberg WM (1997) PhD thesis, ETH Zürich, SwitzerlandGoogle Scholar
  52. 52.
    Jung K, Hazenberg W, Prieto MA, Witholt B Biotechnol Bioeng (in press)Google Scholar
  53. 53.
    Lee SY, Chang HN (1995) Adv Biochem Eng Biotechnol 52:27Google Scholar
  54. 54.
    Huijberts GNM, Eggink G (1996) Appl Microbiol Biotechnol 46:233CrossRefGoogle Scholar
  55. 55.
    Huijberts GNM (1996) PhD thesis, Rijksuniversiteit Groningen, The NetherlandsGoogle Scholar
  56. 56.
    Weusthuis RA, Huijberts GNM, Eggink G (1997) Production of mcl-poly(hydroxyalkanoates) (review). In: Eggink G, Steinbüchel A, Poirier Y, Witholt B (eds) 1996 International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, OttawaGoogle Scholar
  57. 57.
    Durner RA (1998) PhD thesis, ETH Zürich, SwitzerlandGoogle Scholar
  58. 58.
    Scholz C, Fuller RC, Lenz RW (1994) Macromol Chem Physics 195:1405CrossRefGoogle Scholar
  59. 59.
    de Koning GJM, van Bilsen HHM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galiën JG, Schirmer A, Jendrossek D (1994) Polymer 35:2090CrossRefGoogle Scholar
  60. 60.
    Hori K, Soga K, Doi Y (1994) Biotechnol Lett 16:501CrossRefGoogle Scholar
  61. 61.
    Kim O, Gross RA, Hammar WJ, Newmark RA (1996) Macromolecules 29:4572CrossRefGoogle Scholar
  62. 62.
    Gross RA, Kim O, Rutherford DR, Newmark RA (1996) Polym Int 39:205CrossRefGoogle Scholar
  63. 63.
    Song JJ, Yoon SC (1996) Appl Environ Microbiol 62:536Google Scholar
  64. 64.
    Kim OY, Gross RA, Rutherford DR (1995) Can J Microbiol 41:32Google Scholar
  65. 65.
    Curley JM, Hazer B, Lenz RW, Fuller RC (1996) Macromolecules 29:1762CrossRefGoogle Scholar
  66. 66.
    Kim YB, Lenz RW, Fuller RC (1991) Macromolecules 24:5256CrossRefGoogle Scholar
  67. 67.
    Curley JM, Lenz RW, Fuller RC (1996) Int J Biol Macromol 19:29CrossRefGoogle Scholar
  68. 68.
    Hazer B, Lenz RW, Fuller RC (1996) Polymer 37:5951CrossRefGoogle Scholar
  69. 69.
    Kim YB, Rhee YH, Lenz RW (1997) Polym J 29:894CrossRefGoogle Scholar
  70. 70.
    Jung K (1999) PhD thesis, ETH Zürich, SwitzerlandGoogle Scholar
  71. 71.
    Jung K, Sierro N, Egli T, Kessler B, Witholt B (unpublished)Google Scholar
  72. 72.
    Renner G, Haage G, Braunegg G (1996) Appl Microbiol Biotechnol 46:268CrossRefGoogle Scholar
  73. 73.
    Doi Y, Segawa A, Kunioka M (1990) Int J Biol Macromol 12:106CrossRefGoogle Scholar
  74. 74.
    Kang CK, Kusaka S, Doi Y (1995) Biotechnol Lett 17:583CrossRefGoogle Scholar
  75. 75.
    Saito Y, Doi Y (1994) Int Biol Macromol 16:99CrossRefGoogle Scholar
  76. 76.
    Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Polym Int 39:169CrossRefGoogle Scholar
  77. 77.
    Nakamura S, Doi Y, Scandola M (1992) Macromolecules 25:4237CrossRefGoogle Scholar
  78. 78.
    Choi MH, Yoon SC, Lenz RW (1999) Appl Environ Microbiol 65:1570Google Scholar
  79. 79.
    Shi FY, Gross RA, Rutherford DR (1996) Macromolecules 29:10CrossRefGoogle Scholar
  80. 80.
    Valentin HE, Schönebaum A, Steinbüchel A (1992) Appl Microbiol Biotechnol 36:507CrossRefGoogle Scholar
  81. 81.
    Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) Int J Biol Macromol 25:111CrossRefGoogle Scholar
  82. 82.
    Doi Y, Tamaki A, Kunioka M, Soga K (1987) Macromol Chem Rapid Commun 8:631CrossRefGoogle Scholar
  83. 83.
    Eggink G, de Waard P, Huijberts GNM (1995) Can J Microbiol 41:14Google Scholar
  84. 84.
    Valentin HE, Schönebaum A, Steinbüchel A (1996) Appl Microbiol Biotechnol 46:261CrossRefGoogle Scholar
  85. 85.
    Füchtenbusch B, Fabritius D, Steinbüchel A (1996) FEMS Microbiol Lett 138:153CrossRefGoogle Scholar
  86. 86.
    Füchtenbusch B, Fabritius D, Waltermann M, Steinbüchel A (1998) FEMS Microbiol Lett 159:85Google Scholar
  87. 87.
    Satoh H, Mino T, Matsuo T (1999) Int J Biol Macromol 25:105CrossRefGoogle Scholar
  88. 88.
    Barham PJ, Selwood A (1982) European Patent ApplicationGoogle Scholar
  89. 89.
    Holmes PA, Jones E (1982) European Patent ApplicationGoogle Scholar
  90. 90.
    van Lautem N, Gilian J (1986) European Patent ApplicationGoogle Scholar
  91. 91.
    Walker J, Whitton JR, Alderson B (1982) European Patent ApplicationGoogle Scholar
  92. 92.
    Williamson DR, Wilkinson JF (1958) J Gen Microbiol 19:198Google Scholar
  93. 93.
    Berger E, Ramsay BA, Ramsay JA, Chaverie C, Braunegg G (1989) Biotechnol Tech 3: 227CrossRefGoogle Scholar
  94. 94.
    Byrom D (1987) Trends Biotech 5:246CrossRefGoogle Scholar
  95. 95.
    Holmes PA, Lim GB (1985) European Patent ApplicationGoogle Scholar
  96. 96.
    de Koning GJM, Kellerhals M, van Meurs C, Witholt B (1997) Bioprocess Engineering 17:15CrossRefGoogle Scholar
  97. 97.
    de Koning GJM, Witholt B (1997) Bioprocess Engineering 17:7CrossRefGoogle Scholar
  98. 98.
    Preusting H, Kingma J, Huisman G, Steinbüchel A, Witholt B (1993) J Environ Polym Degrad 1:11CrossRefGoogle Scholar
  99. 99.
    Marchessault RH, Morin FG, Wong S, Saracovan I (1995) Can J Microbiol 41:138CrossRefGoogle Scholar
  100. 100.
    Boynton ZL, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW (1999) Appl Environ Microbiol 65:1524Google Scholar
  101. 101.
    Wang FL, Lee SY (1997) Appl Environ Microbiol 63:3703Google Scholar
  102. 102.
    Choi J, Lee SY (1999) Appl Microbiol Biotechnol 51:13CrossRefGoogle Scholar
  103. 103.
    Marchessault RH, Monasterios CJ, Morin FG, Sundararajan PR (1990) Int J Biol Macromol 12:158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Kessler
    • 1
  • R. Weusthuis
    • 2
  • B. Witholt
    • 1
  • G. Eggink
    • 2
  1. 1.Institute of BiotechnologyETH ZürichZürichSwitzerland
  2. 2.Agrotechnological Research Institute (ATO-DLO)WageningenThe Netherlands

Personalised recommendations