Biopolyesters pp 183-207 | Cite as

Production of Microbial Polyester by Fermentation of Recombinant Microorganisms

  • Sang Yup Lee
  • Jong-il Choi
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 71)


Polyhydroxyalkanoates (PHAs) can be produced from renewable sources and are biodegradable with similar material properties and processibility to conventional plastic materials. With recent advances in our understanding of the biochemistry and genetics of PHA biosynthesis and cloning of the PHA biosynthesis genes from a number of different bacteria, many different recombinant bacteria have been developed to improve PHA production for commercial applications. For enhancing PHA synthetic capacity, homologous or heterologous expression of the PHA biosynthetic enzymes has been attempted. Several genes that allow utilization of various substrates were transformed into PHA producers, or non-PHA producers utilizing inexpensive carbon substrate were transformed with the PHA biosynthesis genes. Novel PHAs have been synthesized by introducing a new PHA biosynthesis pathway or a new PHA synthase gene. In this article, recent advances in the production of PHA by recombinant bacteria are described.


Polyhydroxyalkanoates PHA biosynthesis genes Recombinant bacteria Fermentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  2. 2.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Adv Biochem Eng Biotechnol 41:77Google Scholar
  3. 3.
    Byrom D (1991) Biomaterials: novel materials from biological sources. Stockton, New YorkGoogle Scholar
  4. 4.
    Doi Y (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  5. 5.
    Lee SY (1996) Biotechnol Bioeng 49:1CrossRefGoogle Scholar
  6. 6.
    Steinbuchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton, New York, p 124Google Scholar
  7. Lemoigne M (1926) Bull Soc Chem Biol 8:770Google Scholar
  8. 8.
    Steinbuchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219CrossRefGoogle Scholar
  9. 9.
    Holmes PA (1988) Biologically produced PHA polymers and copolymers. In: Bassett (ed) Developments in crystalline polymers. Elsevier, London, p 1Google Scholar
  10. 10.
    Marchessault RH (1996) Trends Polym Sci 4:163Google Scholar
  11. 11.
    Hocking PJ, Marchessault RH (1994) In: Roehr M (ed) Chemistry and technology of biodegradable polymers. Blackie Academic, p 48Google Scholar
  12. 12.
    Steinbuchel A (1996) In: Roehr M (ed) Biotechnology. VCH, p 403Google Scholar
  13. 13.
    Muller HM, Seebach D (1993) Angew Chem 105:483CrossRefGoogle Scholar
  14. 14.
    Lee SY, Chang HN (1995) Adv Biochem Eng Biotechnol 52:27Google Scholar
  15. 15.
    Lee SY (1996) Trends Biotechnol 14:431CrossRefGoogle Scholar
  16. 16.
    Lee SY, Choi J, Wong HH (1999) Int J Biol Macromol 25:31–36CrossRefGoogle Scholar
  17. 17.
    Choi J, Lee SY (1997) Bioprocess Eng 17:335CrossRefGoogle Scholar
  18. 18.
    Lee SY, Choi J (1998) Polymer Degrad Stabil 59:387CrossRefGoogle Scholar
  19. 19.
    Lee SY, Choi J, Chang HN (1997) In: Eggink G, Steinbuchel A, Poirier Y, Witholt B (eds) Proceedings of the 1996 International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, p 127Google Scholar
  20. 20.
    Byrom D (1994) In: Mobley DP (ed) Plastics from microbes: microbial synthesis of polymers and polymer precursors. Hanser Munich, p 5Google Scholar
  21. 21.
    Steinbuchel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour M, Mayer F, Pieper-Furst U, Pries A, Valentin HE, Wieczorek (1995) Can J Microbiol 41:94Google Scholar
  22. 22.
    Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21Google Scholar
  23. 23.
    Braunegg G, Lefebvre G, Genser KF (1998) J Biotechnol 65:127CrossRefGoogle Scholar
  24. 24.
    Steinbuchel A, Fuchtenbusch B (1998) Trends Biotechnol 16:419CrossRefGoogle Scholar
  25. 25.
    Lee SY, Choi J (1999) In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, p 113Google Scholar
  26. 26.
    Peoples OP, Sinskey AJ (1989) J Biol Chem 264:15, 298Google Scholar
  27. 27.
    Schubert P, Steinbuchel A, Schlegel HG (1988) J Bacteriol 170:5837Google Scholar
  28. 28.
    Slater SC, Voige WH, Dennis DE (1988) J Bacteriol 170:4431Google Scholar
  29. 29.
    Choi J, Lee SY (1999) Appl Microbiol Biotechnol 51:13CrossRefGoogle Scholar
  30. 30.
    Shatzman AR (1990) Curr Opin Biotechnol 1:5CrossRefGoogle Scholar
  31. 31.
    Yee L, Blanch HW (1992) Bio/Technol 10:1550CrossRefGoogle Scholar
  32. 32.
    Fidler S, Dennis D (1992) FEMS Microbiol Rev 103:231CrossRefGoogle Scholar
  33. 34.
    Lee SY (1997) Nature Biotechnol 15:17CrossRefGoogle Scholar
  34. 34.
    Kim BS, Lee SY, Chang HN (1992) Biotechnol Lett 14:811CrossRefGoogle Scholar
  35. 35.
    Lee SY, Yim KS, Chang HN, Chang YK (1994) J Biotechnol 32:203CrossRefGoogle Scholar
  36. 36.
    Lee SY, Chang HN (1994) J Environ Polymer Degrad 2:169CrossRefGoogle Scholar
  37. 37.
    Lee SY, Lee YK, Chang HN (1995) J Ferment Bioeng 79:177CrossRefGoogle Scholar
  38. 38.
    Lee SY, Chang HN, Chang YK (1994) Ann. NY Acad Sci 721:43CrossRefGoogle Scholar
  39. 39.
    Lee SY, Chang HN (1996) Ann NY Acad Sci 782:133CrossRefGoogle Scholar
  40. 40.
    Lee SY, Chang HN (1995) Can J Microbiol 41:207Google Scholar
  41. 41.
    Lee SY, Lee KM, Chang HN, Steinbuchel A (1994) Biotechnol Bioeng 44:1337CrossRefGoogle Scholar
  42. 42.
    Lee IY, Kim MK, Park YH, Lee SY (1996) Biotechnol Bioeng 52:707CrossRefGoogle Scholar
  43. 43.
    Lee SY (1994) Biotechnol Lett 16:1247Google Scholar
  44. 44.
    Wang F, Lee SY (1998) Biotechnol Bioeng 58:325CrossRefGoogle Scholar
  45. 45.
    Wang F, Lee SY (1997) Appl Environ Microbiol 63:4765Google Scholar
  46. 46.
    Wong HH, van Wegen RI, Choi J, Lee SY, Middelberg APJ (1999) J Microbiol Biotechnol (in press)Google Scholar
  47. 47.
    Wang F, Lee SY (1997) Appl Environ Microbiol 63:3703Google Scholar
  48. 48.
    Choi J, Lee SY, Han K (1998) Appl Environ Microbiol 64:4897Google Scholar
  49. 49.
    Liu F, Li W, Ridgway D, Gu T (1998) Biotechnol. Lett 20:345CrossRefGoogle Scholar
  50. 50.
    Lee SY, Middelberg APJ, Lee YK (1997) Biotechnol Lett 19:1033CrossRefGoogle Scholar
  51. 51.
    Wong HH, Lee SY (1998) Appl Microbiol Biotechnol 50:30CrossRefGoogle Scholar
  52. 52.
    Lee SY (1998) Bioprocess Eng 18:397CrossRefGoogle Scholar
  53. 53.
    Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) Nature Biotechnol 15:63CrossRefGoogle Scholar
  54. 54.
    Kusaka S, Abe H, Lee SY, Doi Y (1997) Appl Microbiol Biotechnol 47:140CrossRefGoogle Scholar
  55. 55.
    Resch S, Gruber K, Wanner G, Slater S, Dennis D, Lubitz W (1998) J Biotechnol 65:173CrossRefGoogle Scholar
  56. 56.
    Choi J, Lee SY (1999) Biotechnol Bioeng 62:546CrossRefGoogle Scholar
  57. 57.
    Lee SY, Choi J, Han K, Song JY (1999) Appl Environ Microbiol 65:2762Google Scholar
  58. 58.
    Slater S, Gallaher T, Dennis D (1992) Appl Environ Microbiol 58:1089Google Scholar
  59. 59.
    Rhie HG, Dennis D (1995) Can J Microbiol 41:200CrossRefGoogle Scholar
  60. 60.
    Yim KS, Lee SY, Chang HN (1995) Kor J Chem Eng 12:264CrossRefGoogle Scholar
  61. 61.
    Yim KS, Lee SY, Chang HN (1996) Biotechnol Bioeng 49:495CrossRefGoogle Scholar
  62. 62.
    Choi J, Lee SY (1999) Appl Environ Microbiol 65:4363Google Scholar
  63. 63.
    Eschenlauer AC, Stoup SK, Srienc F, Somers DA (1996) Int J Biol Macromol 19:121CrossRefGoogle Scholar
  64. 64.
    Langenbach S, Rehm BHA, Steinbuchel A (1997) FEMS Microbiol Lett 150:303CrossRefGoogle Scholar
  65. 65.
    Qi Q, Steinbuchel A, Rehm BHA (1998) FEMS Microbiol Lett 1677:89Google Scholar
  66. 66.
    Qi Q, Rehm BHA, Steinbuchel A (1997) FEMS Microbiol Lett 157:155CrossRefGoogle Scholar
  67. 67.
    Klinke S, Ren Q, Witholt B, Kessler B (1999) Appl Environ Microbiol 65:540Google Scholar
  68. 68.
    Hein S, Sohling B, Gottschalk G, Steinbuchel A (1997) FEMS Microbiol Lett 153:411CrossRefGoogle Scholar
  69. 69.
    Song S, Hein S, Steinbuchel A (1999) Biotechnol Lett 21:193CrossRefGoogle Scholar
  70. 70.
    Valentin HE, Dennis D (1997) J Biotechnol 58:33CrossRefGoogle Scholar
  71. 71.
    Fukui T, Yokomizo S, Kobayashi G, Doi Y (1999) FEMS Microbiol Lett 170:69CrossRefGoogle Scholar
  72. 72.
    Byrom D (1987) Trends Biotechnol 5:246CrossRefGoogle Scholar
  73. 73.
    Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Biotecnol Bioeng 43:892CrossRefGoogle Scholar
  74. 74.
    Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Biotechnol Bioeng 55:28CrossRefGoogle Scholar
  75. 75.
    Park HC, Park JS, Lee YH, Huh TL (1995) Biotechnol Lett 17:729CrossRefGoogle Scholar
  76. 76.
    Park JS, Park HC, Huh TL, Lee YH (1995) Biotechnol Lett 17:735CrossRefGoogle Scholar
  77. 77.
    Park JS, Huh TL, Lee YH (1997) Enzym Microbiol Technol 21:85CrossRefGoogle Scholar
  78. 78.
    Choi J, Lee SY (1997) Hwahak Konghak 35:684Google Scholar
  79. 79.
    Lee YH, Park JS, Huh TL (1997) Biotechnol Lett 19:77Google Scholar
  80. 80.
    Steinbuchel A, Valentin HE, Schonebaum A (1994) J Environ Polymer Degrad 2:67CrossRefGoogle Scholar
  81. 81.
    Valentin HE, Steinbuchel A (1995) J Environ Polymer Degrad 3:169CrossRefGoogle Scholar
  82. 82.
    Park JS, Lee YH (1996) J Ferment Bioeng 81:197CrossRefGoogle Scholar
  83. 83.
    Lee IY, Kim GJ, Choi DK, Yeon BK, Park YH (1996) J Ferment Bioeng 81:255CrossRefGoogle Scholar
  84. 84.
    Haywood GW, Anderson AJ, Dawes EA (1989) FEMS Microbiol Lett 57:1CrossRefGoogle Scholar
  85. 85.
    Gerngross TU, Snell KD, People OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Biochemistry 33:9311CrossRefGoogle Scholar
  86. 86.
    Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) J Biotechnol 64:177CrossRefGoogle Scholar
  87. 87.
    Kobayashi G, Shiotani T, Shima Y, Doi Y (1994) In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Netherland, p 410Google Scholar
  88. 88.
    Haywood GW, Anderson AJ, Williams GA, Dawes EA, Ewing DF (1991) Int J Biol Macromol 13:83CrossRefGoogle Scholar
  89. 89.
    Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Appl Microbiol Biotechnol 45:363CrossRefGoogle Scholar
  90. 90.
    Steinbuchel A, Wiese S (1992) Appl Microbiol Biotechnol 37:601Google Scholar
  91. 91.
    Liebergesell M, Hustede E, Timm A, Steinbuchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Arch Microbiol 155:415CrossRefGoogle Scholar
  92. 92.
    Fukui T, Doi, Y (1997) J Bacteriol 179:4821Google Scholar
  93. 93.
    Fukui T, Doi Y (1998) Appl Microbiol Biotechnol 49:333CrossRefGoogle Scholar
  94. 94.
    Fukui T, Kichise T, Yoshida Y, Doi Y (1997) Biotechnol Lett 19:1093CrossRefGoogle Scholar
  95. 95.
    Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y (1998) J Bacteriol 180:6459Google Scholar
  96. 96.
    Witholt B, Kessler B (1999) Curr Opin Biotechnol 10:279CrossRefGoogle Scholar
  97. 97.
    Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536Google Scholar
  98. 98.
    Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Appl Microbiol Biotechnol 38:1CrossRefGoogle Scholar
  99. 99.
    Kraak M, Smits THM, Kessler B, Witholt B (1997) J Bacteriol 179:4985Google Scholar
  100. 100.
    Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Appl Microbiol Biotechnol 38:1CrossRefGoogle Scholar
  101. 101.
    Steinbuchel A, Schubert P (1989) Arch Microbiol 153:101CrossRefGoogle Scholar
  102. 102.
    Timm A, Byrom D, Steinbuchel A (1990) Appl Microbiol Biotechnol 33:296CrossRefGoogle Scholar
  103. 103.
    Preusting H, Kingma J, Huisman G, Steinbuchel A, Witholt B (1993) J Environ Poly Degrad 1:11CrossRefGoogle Scholar
  104. 104.
    Liebergesell M, Mayer F, Steinbuchel A (1993) Appl Microbiol Biotechnol 40:292CrossRefGoogle Scholar
  105. 105.
    Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999) J Bacteriol 181:858Google Scholar
  106. 106.
    Yagi K, Miyawaki I, Kayashita A, Kondo M, Kitano Y, Murakami Y, Maeda I, Umeda F, Miura Y, Kawase M, Mizoguchi T (1996) Appl Environ Microbiol 62:1004Google Scholar
  107. 107.
    Boynton ZL, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW (1999) Appl Environ Microbiol 65:1524Google Scholar
  108. 108.
    Follner CG, Muller S, Steinbuchel A, Babel W (1995) J Basic Microbiol 35:179CrossRefGoogle Scholar
  109. 109.
    Suzuki T, Miyake M, Tokiwa Y, Saegusa H, Saito T, Asada Y (1996) Biotechnol Lett 18:1047CrossRefGoogle Scholar
  110. 110.
    Takahashi H, Miyake M, Tokiwa Y, Asada Y (1998) Biotechnol Lett 20:183CrossRefGoogle Scholar
  111. 111.
    Maehara A, Ikai K, Ueda S, Yamane T (1998) Biotechnol Bioeng 60:61CrossRefGoogle Scholar
  112. 112.
    Zhang H, Obias V, Gonyer K, Dennis D (1994) Appl Environ Microbiol 60:1198Google Scholar
  113. 113.
    Leaf TA, Peterson MS, Stoup SK, Somer D, Srienc F (1996) Microbiology 142:1169CrossRefGoogle Scholar
  114. 114.
    Williams MD, Rahn JA, Sherman DH (1996) Appl Environ Microbiol 62:2540Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Sang Yup Lee
    • 1
  • Jong-il Choi
    • 1
  1. 1.Department of Chemical Engineering and BioProcess Engineering Research CenterKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations