Biopolyesters pp 209-240 | Cite as

Production of Polyesters in Transgenic Plants

  • Yves Poirier
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 71)


Polyhydroxyalkanoates (PHAs) are bacterial polyesters having the properties of biodegradable thermoplastics and elastomers. Synthesis of PHAs has been demonstrated in transgenic plants. Both polyhydroxybutyrate and the co-polymer poly(hydroxybutyrate-co-hydroxy-valerate) have been synthesized in the plastids of Arabidopsis thaliana and Brassica napus. Furthermore, a range of medium-chain-length PHAs has also been produced in plant pero-xisomes. Development of agricultural crops to produce PHA on a large scale and at low cost will be a challenging task requiring a coordinated and stable expression of several genes. Novel extraction methods designed to maximize the use of harvested plants for PHA, oil, carbohydrate, and feed production will be needed. In addition to their use as plastics, PHAs can also be used to modify fiber properties in plants such as cotton. Furthermore, PHA can be exploited as a novel tool to study the carbon flux through various metabolic pathways, such as the fatty acid β-oxidation cycle.


Polyhydroxyalkanoates Polyhydroxybutyrate Polyester Transgenic plants Metabolic engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goddijn OJM, Pen J (1995) Trends Biotechnol 13:379CrossRefGoogle Scholar
  2. 2.
    Anderson AJ, Dawes EA (1990) Microbiol Rev 54:450Google Scholar
  3. 3.
    Poirier Y, Nawrath C, Somerville C (1995) Nature Biotechnol 13:142CrossRefGoogle Scholar
  4. 4.
    Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Novel biomaterials from biological sources. MacMillan, New York, p 123Google Scholar
  5. 5.
    Steinbüchel A, Schlegel HG (1991) Mol Microbiol 5:535CrossRefGoogle Scholar
  6. 6.
    Doi K (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  7. 7.
    Steinbüchel A, Füchtenbusch B (1998) Trends Biotechnol 16:419CrossRefGoogle Scholar
  8. 8.
    Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Science 256:520CrossRefGoogle Scholar
  9. 9.
    Poirier Y, Dennis DE, Klomparens K, Nawrath C, Somerville C (1992) FEMS Microbiol Rev 103:237CrossRefGoogle Scholar
  10. 10.
    Meyerowitz EM (1989) Cell 56:263CrossRefGoogle Scholar
  11. 11.
    Meyerowitz EM, Somerville (eds) (1995) Arabidopsis thaliana. CSH, Cold Spring HarborGoogle Scholar
  12. 12.
    Peoples OP, Sinskey AJ (1989) J Biol. Chem 264:15, 293Google Scholar
  13. 13.
    Peoples OP, Sinskey AJ (1989) J Biol Chem 264:15, 298Google Scholar
  14. 14.
    Slater SC, Voige WH, Dennis DE (1988) J Bacteriol 170:4431Google Scholar
  15. 15.
    Schubert P, Steinbüchel A, Schlegel HG (1988) J Bacteriol 170:5837Google Scholar
  16. 16.
    de Koning (1995) Can J Microbiol 41(suppl 1):303Google Scholar
  17. 17.
    Poirier Y, Schechtman LA, Satkowski MM, Noda I, Somerville C (1995) Int J Biol Macromol 17:7CrossRefGoogle Scholar
  18. 18.
    Stuart ES, Lenz RW, Fuller RC (1995) Can J Microbiol 41(suppl 1):84CrossRefGoogle Scholar
  19. 19.
    Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek K (1995) Can J Microbiol 41(suppl 1):94Google Scholar
  20. 20.
    Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1994) J Bacteriol 176:4328Google Scholar
  21. 21.
    Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1995) J Bacteriol 17:2513Google Scholar
  22. 22.
    Wieczorek R, Pries A, Steinbüchel A, Mayer F (1995) J Bacteriol 177:2425Google Scholar
  23. 23.
    Nawrath C, Poirier Y, Somerville CR (1994) Plastid targeting of the enzymes required for the production of polyhydroxybutyrate in higher plants. In: Doi Y, Fukuda K (eds) Biodegradable plastics polymers. Elsevier, Amsterdam, p 136Google Scholar
  24. 24.
    Nawrath C, Poirier Y, Somerville CR (1994) Proc Nat Acad Sci USA 91:12, 760CrossRefGoogle Scholar
  25. 25.
    Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Biosci Biotechnol Biochem 63:870CrossRefGoogle Scholar
  26. 26.
    Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Planta 209:547CrossRefGoogle Scholar
  27. 27.
    Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Nature Biotechnol 17:1011CrossRefGoogle Scholar
  28. 28.
    Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Pub, New YorkGoogle Scholar
  29. 29.
    Schweiger G, Buckel W (1984) FEBS Lett 171:79CrossRefGoogle Scholar
  30. 30.
    Williams DR, Anderson AJ, Dawes EA, Ewing DF (1994) Appl Microbiol Biotechnol 40:717CrossRefGoogle Scholar
  31. 31.
    Gerbling H, Gerhart B (1989) Plant Physiol 91:1387Google Scholar
  32. 32.
    Camp PJ, Randall DD (1985) Plant Physiol 77:571Google Scholar
  33. 33.
    LaRossa RA, Van Dyk T, Smulski DR (1987) J Bacteriol 169:1372Google Scholar
  34. 34.
    Van Dyk TK, LaRossa RA (1987) Mol Gen Genet 207:435CrossRefGoogle Scholar
  35. 35.
    Rhodes D, Hogan AL, Deal L, Jamieson GC, Haworth P (1987) Plant Physiol 84:775CrossRefGoogle Scholar
  36. 36.
    Shaner DL, Singh BK (1993) Plant Physiol 103:1221Google Scholar
  37. 37.
    Singh BK, Shaner DL (1992) Carbon flow through branched-chain amino acid biosynthetic pathway: lessons from acetohydroxy acid synthase inhibitors. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Maryland, p 354Google Scholar
  38. 38.
    Calhoun DH, Rimerman RA, Hatfield GW (1973) J Biol Chem 25:3511Google Scholar
  39. 39.
    Eisenstein E, Yu HD, Fisher KE, Iacuzio DA, Ducote DR, Schwarz RP (1995) Biochemistry 34:9403CrossRefGoogle Scholar
  40. 40.
    Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) J Bact 180:197, 941Google Scholar
  41. 41.
    Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys K (1999) Int J Biol Macromol 25:30, 341CrossRefGoogle Scholar
  42. 42.
    Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219CrossRefGoogle Scholar
  43. 43.
    De Koning GJM, Van Bilesen HMM, Lemstra PJ, Hazenberg W, Withold B, Preusting H, Van der Galiën JG, Schirmer A, Jendrossek D (1994) Polymer 35:2090CrossRefGoogle Scholar
  44. 44.
    Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl Environ Microbiol 54:2924Google Scholar
  45. 45.
    Schulz H (1991) Biochim Biophys Acta 1081:109Google Scholar
  46. 46.
    Gerhard B (1993) Catabolism of fatty acid acids. In: Moore TS (ed) Lipid metabolism in plants. CRS Press, Bâton Rouge, p 527Google Scholar
  47. 47.
    Fukui T, Shiomi N, Doi Y (1998) J Bacteriol 180:667Google Scholar
  48. 48.
    Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Environ Microbiol 56:3354Google Scholar
  49. 49.
    Timm A, Steinbüchel A (1990) Appl Environ Microbiol 56:3360Google Scholar
  50. 50.
    Huijberts GNM, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Appl Environ Microbiol 58:536Google Scholar
  51. 51.
    Saito Y, Doi Y (1993) Int J Biol Macromol 15:287CrossRefGoogle Scholar
  52. 52.
    Huijbert GNM, de Rijk TC, de Waard P, Eggink G (1994) J Bacteriol 176:1661Google Scholar
  53. 53.
    Rehm BHA, Krüger N, Steinbüchel A (1998) J Biol Chem 273:24, 044CrossRefGoogle Scholar
  54. 54.
    Mittendorf V, Robertson EJ, Leech RM, Krüger N, Steinbüchel A, Poirier Y (1998) Proc Natl Acad Sci USA 95:13, 397CrossRefGoogle Scholar
  55. 55.
    Mittendorf V, Krüger N, Steinbüchel A, Poirier Y (1998) Biosynthesis of medium-chainlength polyhydroxyalkanoates in transgenic Arabidopsis plants expressing the PhaC1 and PhaC2 synthases from Pseudomonas aeruginosa. In: Steinbüchel A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Wiley-VCH, Weinheim, p 368Google Scholar
  56. 56.
    Preisig-Müller R, Gühnemann-Schäfer KG, Kindl H (1994) J Biol Chem 269:20, 475Google Scholar
  57. 57.
    Engeland KK, Kindl H (1991) Eur J Biochem 200:171CrossRefGoogle Scholar
  58. 58.
    Mittendorf V, Bongcam V, Allenbach L, Coullerez G, Martini N, Poirier Y (1999) Plant J 20:45–55CrossRefGoogle Scholar
  59. 59.
    McConn M, Browse J (1996) Plant Cell 8:403CrossRefGoogle Scholar
  60. 60.
    Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Science 257:72CrossRefGoogle Scholar
  61. 61.
    Jones A, Davies HM, Voelker TA (1995) Plant Cell 7:359CrossRefGoogle Scholar
  62. 62.
    Facciotti MT, Yuan L (1998) Fett/Lipid 4/5:167CrossRefGoogle Scholar
  63. 63.
    Eccleston VS, Cranmer AM, Voelker TA, Ohlrogge JB (1996) Planta 198:46CrossRefGoogle Scholar
  64. 64.
    Hooks MA, Fleming Y, Larson TR, Graham IA (1999) Planta 207:385CrossRefGoogle Scholar
  65. 65.
    Martini N, Schell J, Abbadi A, Spener F, Töpfer R (1999) Vorträge für Pflanzenzüchtung 45:133Google Scholar
  66. 66.
    John ME, Keller G (1996) Proc Natl Acad Sci USA 93:12, 768CrossRefGoogle Scholar
  67. 67.
    John ME (1997) Crit Rev Biotechnol 17:185CrossRefGoogle Scholar
  68. 68.
    Jendrossek D, Schirmer A, Schlegel HG (1996) Appl Microbiol Biotechnol 46:451CrossRefGoogle Scholar
  69. 69.
    Van de Loo FJ, Broun P, Turner S, Somerville C (1995) Proc Natl Acad Sci USA 92:6743CrossRefGoogle Scholar
  70. 70.
    Lee M, Lenman M, Banas A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson PO, Sjodahl S, Green A, Stymne S (1998) Science 280:915CrossRefGoogle Scholar
  71. 71.
    Byrom D (1987) Trends Biotechnol 5:246CrossRefGoogle Scholar
  72. 72.
    Berger E, Ramsay BA, Ramsay JA, Chavarie C, Braunegg G (1989) Biotechnol Tech 3:227CrossRefGoogle Scholar
  73. 73.
    Ramsay JA, Berger E, Ramsay BA, Chavarie C (1990) Biotechnol Tech 4:221CrossRefGoogle Scholar
  74. 74.
    Martin DP, Peoples OP, Williams SF (1997) PCT application WO 97/15, 681Google Scholar
  75. 75.
    Noda I (1997) PCT application WO 97/07, 230Google Scholar
  76. 76.
    Kurdikar DL, Strauser FE, Solodar AJ, Paster MD, Asrar J (1998) PCT application WO 98/46, 782Google Scholar
  77. 77.
    Noda I (1998) US Pat 5, 821, 299Google Scholar
  78. 78.
    Kurdikar DL, Strauser FE, Solodar AJ, Paster MD, Asrar J (1998) PCT application WO 98/46, 783Google Scholar
  79. 79.
    Seebach D, Roggo S, Zimmermann J (1987) Biological-chemical preparation of 3-hydroxycarboxylic acids and their use in EPC-synthesis. In: Bartmann W, Sharpless KB (eds) Stereochemistry of organic and bioorganic transformations. VCH Verlagsgesellschaft, Weinheim, p 85Google Scholar
  80. 80.
    Liddell (1997) PCT application WO 97/17, 459Google Scholar
  81. 81.
    Noda I (1998) US Pat 5, 849, 854Google Scholar
  82. 82.
    Noda I (1999) US Pat 5, 899, 339Google Scholar
  83. 83.
    Whistler RL, BeMiller JN, Paschall EF (eds) (1984) Starch: chemistry and technology. Academic Press, OrlandoGoogle Scholar
  84. 84.
    Röbbelen G, Downey RK, Ashri A (eds) (1989) Oil crops of the world. McGraw-Hill, New YorkGoogle Scholar
  85. 85.
    Moore JW (1992) Modern Plastics 69:58Google Scholar
  86. 86.
    Chemical Market Reporter (1998) 254Google Scholar
  87. 87.
    Page WJ (1997) Waste sources for polyhydroxyalkanoate production. In: Eggink G, Steinbüchel A, Poirier Y, Witholt B (eds) 1996 International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, Ottawa, p 56Google Scholar
  88. 88.
    Lee SY, Choi J, Chang HN (1997) Process development and economic evaluation for the production of polyhydroxyalkanoates by Alcaligenes eutrophus. In: Eggink G, Steinbüchel A, Poirier Y, Witholt B (eds) 1996 International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, Ottawa, p 127Google Scholar
  89. 89.
    de Koning G, Kellerhals M, van Meurs C, Witholt B (1997) A process for the production of bacterial medium-chain-length poly[(R)-3-hydroxyalkanoates]: reviewing the status quo. In: Eggink G, Steinbüchel A, Poirier Y, Witholt B (eds) 1996 International Symposium on Bacterial Polyhydroxyalkanoates. NRC Research Press, Ottawa, p 137Google Scholar
  90. 90.
    Lee SY (1996) Trends Biotechnol 14:431CrossRefGoogle Scholar
  91. 91.
    de Koning G, Kellerhals M, van Meurs C, Witholt B (1997) Bioprocess Eng 17:15CrossRefGoogle Scholar
  92. 92.
    Meyer P (1998) Stabilities and instabilities in transgene expression. In: Lindsey K (ed) Transgenic plant research. Harwood Academic Publishers, Amsterdam, p 263Google Scholar
  93. 93.
    Baulcombe DC (1999) Cur Opin Plant Biol 2:109CrossRefGoogle Scholar
  94. 94.
    Ulker B, Allen GC, Thompson WF, Spiker S, Weissinger AK (1999) Plant J 18:25395. Vain P, Worland B, Kohli A, Snape JW, Christou P, Allen GC, Thompson WF (1999) Plant J 18:233CrossRefGoogle Scholar
  95. 96.
    Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Plant J 16:651CrossRefGoogle Scholar
  96. 97.
    Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, Guenet Y, Mourrain P, Palauqui JC, Vernhettes S, Vialle T, Wostrikoff K, Vaucheret H (1998) Plant Cell 10:1747CrossRefGoogle Scholar
  97. 98.
    Kerr R (1998) Science 281:1128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Yves Poirier
    • 1
  1. 1.Institut d’Écologie-Biologie et Physiologie VégétalesUniversité de LausanneLausanneSwitzerland

Personalised recommendations