Advertisement

IV. ComputationalMetho ds for the Simulation of Classical and Quantum Many Body Systems Arising from Nonextensive Thermostatistics

  • I. Andricioaei
  • J.E. Straub
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 560)

Abstract

This chapter presents a variety of computational methods that make use of essential features of the non-extensive thermostatistics proposed by Tsallis. The basic properties of the non-extensive thermostatistics are derived and discussed in the context of the law of mass action and reaction kinetics. Those results are used to motivate and derive Monte Carlo and Molecular Dynamics algorithms which isolate low lying energy minima or effectively sample the extensive or non-extensive thermostatistical distributions. Algorithmic protocols are defined for cases of equilibrium sampling and simulated annealing for both classical and quantum simulations of many body systems. A practical method for the optimization of the resulting simulation algorithms is described. A method for global optimization based on the simulated annealing Cauchy-Lorentz “density packets” is also presented. Applications to a variety of problems related to simulated annealing and enhanced sampling in the context of model, spin, atomic and biomolecular systems are discussed.

Keywords

Simulated Annealing Monte Carlo Detailed Balance Acceptance Probability Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 1996).zbMATHGoogle Scholar
  2. 2.
    J. P. Valleau and S. G. Whittington, in Statistical Mechanics, Part A, ed. B. J. Berne (Plenum Press, New York, 1976).Google Scholar
  3. 3.
    J. P. Valleau and G. M. Torrie, in Statistical Mechanics, Part A, ed. B. J. Berne (Plenum Press, New York, 1976).Google Scholar
  4. 4.
    B. J. Berne and J. E. Straub, Curr. Opin. Struc. Bio. 7, 181 (1997).CrossRefGoogle Scholar
  5. 5.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E M. F. Curado and C. Tsallis, J. Phys. A 24, L69 (1991).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); Z. Daróczy, Inf. Control 16, 36 (1970).CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).zbMATHGoogle Scholar
  9. 9.
    C. Tsallis, Braz. J. Phys. 29, 1 (1999).CrossRefGoogle Scholar
  10. 10.
    J. E. Straub and I. Andricioaei, in Computational Molecular Dynamics: Challenges, Methods, Ideas, eds. P. Deuflhard, J. Hermans, B. Leimkuhler, A. Mark, S. Reich, and R. D. Skeel (Springer-Verlag, Berlin, 1999).Google Scholar
  11. 11.
    J. Maddox, Nature 365,103 (1993).CrossRefADSGoogle Scholar
  12. 12.
    B. A. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).CrossRefADSGoogle Scholar
  13. 13.
    K. K. Bhattacharya and J. P. Sethna, Phys. Rev. E 57, 2553 (1998).CrossRefADSGoogle Scholar
  14. 14.
    I. Andricioaei and J. E. Straub, J. Chem. Phys. 107, 9117 (1997).CrossRefADSGoogle Scholar
  15. 15.
    C. Tsallis, S. V. F. Levy, A. M. C. de Souza, and R. Maynard, Phys. Rev. Lett. 75, 3589 (1995).zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    R. Zwanzig, J. Chem. Phys. 103, 9397 (1995).CrossRefADSGoogle Scholar
  17. 17.
    Such “global” master equations have recently gained attention in the study of protein folding. See, for example, E. I. Shakhnovich and A. M. Gutin, Eurphys. Lett. bf 9, 569 (1989); J. G. Saven, J. Wang, and P. G. Wolynes, J. Chem. Phys. 101, 11037 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing (Wiley, New York, 1989).zbMATHGoogle Scholar
  19. 19.
    H. Frauenfelder and P. G. Wolynes, Physics Today, p. 58 (February, 1994).Google Scholar
  20. 20.
    J. E. Straub and J.-K. Choi, J. Phys. Chem. 98, 10978 (1994); J. E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. USA 90, 809 (1993); J. E. Straub and D. Thirumalai, Proteins 15, 360 (1993); J. E. Straub, A. Rashkin, and D. Thirumalai, J. Am. Chem. Soc. 98, 10978 (1994).CrossRefGoogle Scholar
  21. 21.
    S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    J. E. Straub, in Recent developments in theoretical studies of proteins, ed. R. Elber (World Scientific, Singapore), in press.Google Scholar
  23. 23.
    S. H. Northrup and J. A. McCammon, Biopolymers 19, 1001 (1980).CrossRefGoogle Scholar
  24. 24.
    N. Metropolis, A. W. Rosenbluth, N. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).CrossRefADSGoogle Scholar
  25. 25.
    C. Pangali, M. Rao, and B. J. Berne, Chem. Phys. Lett. 55, 413 (1978).CrossRefADSGoogle Scholar
  26. 26.
    P. J. Rossky, J. D. Doll, and H. L. Friedman, J. Chem. Phys. 69, 4628 (1978).CrossRefADSGoogle Scholar
  27. 27.
    R. H. Swendsen, D. Bouzida, and S. Kumar, Technical Report 91-121-NAMS-27, Carnegie Mellon University (1991).Google Scholar
  28. 28.
    C. Tsallis and D. A. Stariolo, Physica A 233, 395 (1996).CrossRefADSGoogle Scholar
  29. 29.
    H. Szu and R. Hartley, Phys. Lett. A 122, 157 (1987).CrossRefADSGoogle Scholar
  30. 30.
    T. J. P. Penna, Phys. Rev. E 51, R1 (1995).CrossRefADSGoogle Scholar
  31. 31.
    I. Andricioaei and J. E. Straub, Phys. Rev. E 53, R3055 (1996).CrossRefADSGoogle Scholar
  32. 33.
    P. A. Alemany and D. H. Zanette, Phys. Rev. E 49, R956 (1994).CrossRefADSGoogle Scholar
  33. 34.
    M. A. Moret, P. G. Pascutti, P. M. Bisch, and K. C. Mundim, J. Comput. Chem. 19, 647 (1998).CrossRefGoogle Scholar
  34. 35.
    K. C. Mundim and D. E. Ellis, Braz. J. Phys. 29, 199 (1999).CrossRefGoogle Scholar
  35. 36.
    R. Salazar and R. Toral, J. Stat. Phys. 89, 1047 (1999).CrossRefADSGoogle Scholar
  36. 37.
    U. H. E. Hansmann and Y. Okamoto, Braz. J. Phys. 29, 187 (1999).CrossRefGoogle Scholar
  37. 38.
    Y. Xiang, D. Y. Sun, W. Fan, and X. G. Gong, Phys. Lett. A 233, 216 (1997).CrossRefADSGoogle Scholar
  38. 39.
    H. Nishimori and J. Inoue, J. Phys. A 31, 5661 (1998).zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 40.
    I. Andricioaei and J. E. Straub, Physica A 247, 553 (1997).CrossRefADSGoogle Scholar
  40. 41.
    G. W. Cunningham and P. H. E. Meijer, J. Comput. Phys. 20, 50 (1976).CrossRefADSGoogle Scholar
  41. 42.
    R. J. Glauber, J. Math. Phys. 4, 294 (1963).zbMATHCrossRefMathSciNetADSGoogle Scholar
  42. 43.
    A. R. Lima, J. S. S. Martins, and T. J. P. Penna, Physica A 268, 533 (1999).CrossRefGoogle Scholar
  43. 44.
    P. Salamon, J. D. Nulton, J. R. Harland, J. Pedersen, G. Ruppeiner, and L. Liao, Comput. Phys. Commun. 49, 423 (1988).CrossRefADSGoogle Scholar
  44. 45.
    J. Ma and J. E. Straub, J. Chem. Phys. 101, 533 (1994); ibid. 103, 9113 (1995).CrossRefADSGoogle Scholar
  45. 46.
    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).ADSCrossRefGoogle Scholar
  46. 47.
    C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc. 90, 909 (1995).zbMATHCrossRefGoogle Scholar
  47. 48.
    Y. Pak and S. M. Wang, J. Chem. Phys. 111, 4359 (1999).CrossRefADSGoogle Scholar
  48. 49.
    Y. Pak and S. Wang, J. Phys. Chem. B 104, 354 (2000).CrossRefGoogle Scholar
  49. 50.
    R. D. Mountain and D. Thirumalai, J. Phys. Chem. 93, 6975 (1989).CrossRefGoogle Scholar
  50. 51.
    J. E. Straub and D. Thirumalai, Proc. Natl. Acad. Sci. USA 90, 809 (1993); J. E. Straub and D. Thirumalai, Proteins 15, 360 (1993).CrossRefADSGoogle Scholar
  51. 52.
    J. E. Straub, A. Rashkin, and D. Thirumalai, J. Am. Chem. Soc. 116, 2049 (1994).CrossRefGoogle Scholar
  52. 53.
    D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).CrossRefADSGoogle Scholar
  53. 54.
    A. K. Rajagopal and C. Tsallis, Phys. Lett. A 257, 283 (1999).zbMATHCrossRefMathSciNetADSGoogle Scholar
  54. 55.
    J. E. Straub and I. Andricioaei, Braz. J. Phys. 29, 179 (1999).CrossRefGoogle Scholar
  55. 56.
    J. Ma, Ph.D. thesis (Boston University, 1996).Google Scholar
  56. 57.
    R. C. Tolman, The principles ofStatistic al Mechanics (Dover, New York, 1979).Google Scholar
  57. 58.
    D. Hsu and D. Coker, J. Chem. Phys. 96, 4266 (1992).CrossRefADSGoogle Scholar
  58. 59.
    J. Frenkel, Wave Mechanics: Advanced General Theory (Clarendon Press, Oxford, 1934). In the Dover edition (1950), see p. 253. Frenkel cites an appendix in the Russian edition of Dirac’s The Principles ofQuantum Mechanics (Clarendon Press, Oxford, 1930).Google Scholar
  59. 60.
    See, for example, Chapter 2 in H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Massachusetts, 1980).zbMATHGoogle Scholar
  60. 62.
    A. D. McLachlan, Mol. Phys. 8, 39 (1964).CrossRefMathSciNetADSGoogle Scholar
  61. 63.
    P. Amara and J. E. Straub, J. Phys. Chem. 99, 14840 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • I. Andricioaei
    • 1
  • J.E. Straub
    • 1
  1. 1.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations