VI. Dynamic and Thermodynamic Stability of Nonextensive Systems

  • J. Naudts
  • M. Czachor
Part of the Lecture Notes in Physics book series (LNP, volume 560)


We prove uniqueness of the equilibrium states of q-thermodynamics for 1<q≤2, using both the unnormalized and the recently introduced normalized energy functional. The proof follows from thermodynamic stability of equilibrium states in case of the unnormalized energy. Dynamic stability is shortly discussed.


Free Energy Density Matrix Thermodynamic Stability Dynamic Stability Invariant Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Tsallis, R. S. Mendes, and A. R. Plastino, The role of constraints within generalized nonextensive statistics. Physica A 261, 543–554 (1998).CrossRefGoogle Scholar
  2. 2.
    C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 52, 479 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    E. M. F. Curado and C. Tsallis, Generalized statistical mechanics: connection with thermodynamics.J. Phys. A 24,L69–L72(1991).CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    M. Czachor and J. Naudts, Microscopic Foundation of Nonextensive Statistics. Phys. Rev E 59, R2497–R2500 (1999).CrossRefADSGoogle Scholar
  5. 5.
    J. Naudts, Dual description of nonextensive ensembles, preprint (1999) [condmat/ 9904070 v2].Google Scholar
  6. 6.
    D. D. Holm, J. E. Marsden, T. S. Ratiu, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 2–116 (1985).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, New York, 1994).zbMATHGoogle Scholar
  8. 8.
    D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).zbMATHGoogle Scholar
  9. 9.
    W. Thirring, Lehrbuch der Mathematischen Physik, Vol. 4 (Springer-Verlag, Wien, 1980).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Naudts
    • 1
  • M. Czachor
    • 1
    • 2
    • 3
  1. 1.Departement NatuurkundeUniversiteit Antwerpen, UIAAntwerpenBelgium
  2. 2.Katedra Fizyki Teoretycznej i Metod MatematycznychPolitechnika Gdańska ul.GdaínskPoland
  3. 3.Arnold Sommerfeld Institute for Mathematical Physics Technical University of ClausthalClausthal-ZellerfeldGermany

Personalised recommendations