Advertisement

VII. Generalized Simulated Annealing Algorithms Using Tsallis Statistics: Application to ±J Spin Glass Model

  • J. Klos
  • S. Kobe
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 560)

Abstract

Recently, the Tsallis generalized distribution of states has been adapted to various optimization algorithms. New Monte Carlo acceptance probabilities have been worked out and tested in a number of physical systems. In the paper we have applied the generalized simulated annealings to a ± spin glass of 70 X 70 spins on a square lattice. Since the system ground-state energy was known exactly the ability of the generalized acceptance probabilities to find low-energy states has been checked out. Efficiency of the new annealing procedures has also been compared with that of the traditional method with respect to the number of annealing steps.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science220671(1983).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    T. J. P. Penna, Phys. Rev. E51R1(1995).CrossRefADSGoogle Scholar
  3. 3.
    I. Andricioaei and J. E. Straub, Phys. Rev. E53R3055(1996).CrossRefADSGoogle Scholar
  4. 4.
    C. Tsallis, J. Stat. Phys.52479(1988).zbMATHGoogle Scholar
  5. 5.
    D. A. Stariolo and C. Tsallis, in Annual Reviews ofComputational Physics IIed.D. Stauffer(World Scientific, Singapore1995), p.343.Google Scholar
  6. 6.
    C. DeSimone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi, J. Stat. Phys.80487(1995).zbMATHCrossRefADSGoogle Scholar
  7. 7.
    I. Andricioaei and J. E. Straub,Physica A 247 553 (1997).CrossRefADSGoogle Scholar
  8. 8.
    K. Binder and D. W. Herrmann, Monte Carlo Simulation in Statistical Physics Springer Series in Solid-State Sciences, Vol. 80 (Springer-Verlag, Berlin, 1988).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Klos
    • 1
    • 2
  • S. Kobe
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany
  2. 2.Instytut FizykiUniwersytet im. A. Mickiewicza, Coll. PhysicumPoznańPoland

Personalised recommendations