Advertisement

VIII. Protein Folding Simulations by a Generalized-Ensemble Algorithm Based on Tsallis Statistics

  • Y. Okamoto
  • U.H.E. Hansmann
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 560)

Abstract

We review uses of Tsallis statistical mechanics as a generalized-ensemble simulation algorithm in the protein folding problem. A simulation based on this algorithm performs a random walk in energy space, and it allows one not only to find the global-minimum-energy conformation but also to obtain probability distributions in canonical ensemble for a wide temperature range from only one simulation run. The folding properties of a penta peptide, Met-enkephalin, are studied by this algorithm.

Keywords

Monte Carlo Free Energy Barrier Free Energy Landscape Canonical Distribution Boltzmann Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Vásquez, G. Némethy, and H. A. Scheraga, Chem. Rev. 94, 2183 (1994).CrossRefGoogle Scholar
  2. 2.
    M. Levitt, Curr. Opin. Struct. Biol. 6, 193 (1996).CrossRefGoogle Scholar
  3. 3.
    C. J. Epstain, R. F. Goldberger, and C. B. Anfinsen, Cold Spring Harbor Symp. Quant. Biol. 28439(1963).Google Scholar
  4. 4.a)
    C. Levinthal, J. Chim. Phys. 65, 44 (1968).Google Scholar
  5. b).
    D. B. Wetlaufer, Proc. Natl. Acad. Sci. USA 70, 691 (1973).CrossRefADSGoogle Scholar
  6. 5.
    B. J. Berne and J. E. Straub, Curr. Opin. Struct. Biol. 7, 181 (1997).CrossRefGoogle Scholar
  7. 6.
    Y. Okamoto, Recent Res. Devel. in Pure & Applied Chem. 2, 1 (1998).Google Scholar
  8. 7.
    U. H. E. Hansmann and Y. Okamoto, Curr. Opin. Struct. Biol. 9, 177 (1999).CrossRefGoogle Scholar
  9. 8.
    U. H. E. Hansmann and Y. Okamoto, in Ann. Rev. Comput. Phys. VI, ed. by D. Stauffer (World Scientific, Singapore, 1999) pp. 129–157.Google Scholar
  10. 9.
    B. A. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991); Phys. Rev. Lett. 68, 9 (1992).CrossRefADSGoogle Scholar
  11. 10.
    U. H. E. Hansmann and Y. Okamoto, J.Comput. Chem. 14, 1333 (1993).CrossRefGoogle Scholar
  12. 11. a)
    A. P. Lyubartsev, A. A. Martinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).CrossRefADSGoogle Scholar
  13. b).
    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).ADSCrossRefGoogle Scholar
  14. 12.
    B. Hesselbo and R. B. Stinchcombe, Phys. Rev. Lett. 74, 2151 (1995).CrossRefADSGoogle Scholar
  15. 13.
    U. H. E. Hansmann and Y. Okamoto, J. Comput. Chem. 18, 920 (1997).CrossRefGoogle Scholar
  16. 14.
    U. H. E. Hansmann, Y. Okamoto, and F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996).CrossRefADSGoogle Scholar
  17. 15.
    N. Nakajima, H. Nakamura, and A. Kidera, J. Phys. Chem. 101, 817 (1997).CrossRefGoogle Scholar
  18. 16.
    C. Bartels and M. Karplus, J. Phys. Chem. B 102, 865 (1998).CrossRefGoogle Scholar
  19. 17.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 18.
    U. H. E. Hansmann and Y. Okamoto, Phys. Rev. E 56, 2228 (1997).CrossRefADSGoogle Scholar
  21. 19.
    U. H. E. Hansmann, F. Eisenmenger, and Y. Okamoto, Chem. Phys. Lett. 297, 374 (1998).CrossRefADSGoogle Scholar
  22. 20.
    U. H. E. Hansmann and Y. Okamoto, Braz. J. Phys. 29, 187 (1999).CrossRefGoogle Scholar
  23. 21.
    I. Andricioaei and J. E. Straub, Phys. Rev. E 53, R3055 (1996).CrossRefADSGoogle Scholar
  24. 22.
    I. Andricioaei and J. E. Straub, J. Chem. Phys. 107, 9117 (1997).CrossRefADSGoogle Scholar
  25. 23.
    U. H. E. Hansmann, Physica A 242, 250 (1997).CrossRefADSGoogle Scholar
  26. 24. a)
    F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem. 79, 2361 (1975).CrossRefGoogle Scholar
  27. b).
    G. Némethy, M. S. Pottle, and H. A. Scheraga, J. Phys. Chem. 87, 1883 (1983).CrossRefGoogle Scholar
  28. c).
    M.J. Sippl, G. Némethy, and H. A. Scheraga, J. Phys. Chem. 88, 6231 (1984).CrossRefGoogle Scholar
  29. 25. a)
    H. Kawai, Y. Okamoto, M. Fukugita, T. Nakazawa, and T. Kikuchi, Chem. Lett. 1991, 213 (1991).CrossRefGoogle Scholar
  30. b).
    Y. Okamoto, M. Fukugita, T. Nakazawa, and H. Kawai, Protein Eng. 4, 639 (1991).CrossRefGoogle Scholar
  31. 26.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).CrossRefADSGoogle Scholar
  32. 27.
    A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).CrossRefADSGoogle Scholar
  33. 28.
    U. H. E. Hansmann and Y. Okamoto, J. Phys. Soc. Jpn. 63, 3945 (1994); Physica A 212, 415 (1994).CrossRefADSGoogle Scholar
  34. 29.
    Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. USA 84, 6611 (1984).CrossRefMathSciNetADSGoogle Scholar
  35. 30.
    Y. Okamoto, T. Kikuchi, and H. Kawai, Chem. Lett.1992, 1275 (1992).CrossRefGoogle Scholar
  36. 31.
    P. J. Kraulis, J. Appl. Cryst. 24, 946 (1991).CrossRefGoogle Scholar
  37. 32. a)
    D. Bacon and W. F. Anderson, J. Mol. Graphics 6, 219 (1988).CrossRefGoogle Scholar
  38. b).
    E. A. Merritt and M. E. P. Murphy, Acta Cryst. D 50, 869 (1994).CrossRefGoogle Scholar
  39. 33.
    M. Masuya, in preparation.Google Scholar
  40. 34.
    F. Eisenhaber, P. Lijnzaad, P. Argos, C. Sander, and M. Scharf, J. Comput. Chem. 16, 273 (1995).CrossRefGoogle Scholar
  41. 35.
    U. H. E. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl. Acad. Sci. USA 9410652 (1997).CrossRefADSGoogle Scholar
  42. 36.
    U. H. E. Hansmann, Y. Okamoto, and J. N. Onuchic, PROTEINS: Struct. Funct.Genet. 34, 472 (1999).CrossRefGoogle Scholar
  43. 37.
    F. Eisenmenger and U. H. E. Hansmann, J. Phys. Chem. B 101, 3304 (1997).CrossRefGoogle Scholar
  44. 38.
    A. Mitsutake, U. H. E. Hansmann, and Y. Okamoto, J. Mol. Graphics Mod. 16226 (1998).Google Scholar
  45. 39.
    R. A. Sayle and E. J. Milner-White, TIBS 20, 374 (1995).Google Scholar
  46. 40.
    J. N. Onuchic, Z. Luthey-Schulten, and P.G. Wolynes, Ann. Rev. Phys. Chem. 48, 545 (1997).CrossRefADSGoogle Scholar
  47. 41.
    K. A. Dill and H. S. Chan, Nature Struct. Biol. 4, 10 (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Y. Okamoto
    • 1
  • U.H.E. Hansmann
    • 2
  1. 1.Department of Theoretical Studies, Institute for Molecular Science and Dept. of Funct. Mol. Sci.The Graduate University for Advanced StudiesAichiJapan
  2. 2.Department of PhysicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations