Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them

  • Mark P. Haugan
  • C. Lämmerzahl
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)


Modern formulations of equivalence principles provide the foundation for an efficient approach to understanding and organizing the structural features of gravitation field theories. Since theories’ predictions reflect differences in their structures, principles of equivalence also support an efficient experimental strategy for testing gravitation theories and for exploring the range of conceivable gravitation physics. These principles focus attention squarely on empirical consequences of the fundamental structural differences that distinguish one gravitation theory from another. Interestingly, the variety of such consequences makes it possible to design and perform experiments that test equivalence principles stringently but do so in markedly different ways than the most familiar experimental tests.


Quantum Gravity Gravitational Potential Lagrangian Density Equivalence Principle Atomic Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Newton: Philosophiae Naturalis Principia Mathematica (London 1686).Google Scholar
  2. 2.
    A. Einstein: Jahrb. Radioact. Elect. 4, 411 (1907).Google Scholar
  3. 3.
    L. Maleki: SpaceTime Mission: Clock Test of Relativity at four Solar Radii, this volume.Google Scholar
  4. 4.
    R.V. Eötvös, V. Pekár and E. Fekete: Beiträge zum Gesetz der Proportionalität von Trägheit und Gravität, Ann. Physik 68, 11 (1922).CrossRefGoogle Scholar
  5. 5.
    Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Harris, G.L. Smith, and H.E. Swanson: New test of the universality of free fall, Phys. Rev. D 50, 3614 (1994).ADSGoogle Scholar
  6. 6.
    N. Lockerbie, J. Mester, R. Torii, S. Vitale, and P. Worden: STEP: A Status Report, this volume, p.213.Google Scholar
  7. 7.
    A. Einstein: Preuss. Akad. Wiss Berlin Sitzber. 688 (1916).Google Scholar
  8. 8.
    J. Norton: General covariance and the foundations of general relativity: eight decades of dispute, Rep. Prog. Phys. 56, 791 (1993).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R. Gambini and J. Pullin: Nonstandard optics from quantum space-time, Phys. Rev. D 59, 124021 (1999).ADSMathSciNetGoogle Scholar
  10. 10.
    J. Ellis, N.E. Mavromatos and D.V. Nanopoulos: Probing models of quantum space-time foam, preprint gr-qc/9909085.Google Scholar
  11. 11.
    M.P. Haugan and C. Lämmerzahl: On the experimental foundations of the Maxwell equations, Ann. Phys. (Leipzig) 9, 119 (2000).Google Scholar
  12. 12.
    K. Nordtvedt: Qualitative relationship between clocks gravitational “red-shift” violatings and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975).ADSGoogle Scholar
  13. 13.
    M.P. Haugan: Energy Conservation and the Principle of Equivalence, Ann. Phys. (N.Y.) 118, 156 (1979).CrossRefADSGoogle Scholar
  14. 14.
    C.M. Will: Theory and Experiment in Gravitation Physics, revised edition (Cambridge University Press, Cambridge 1993).Google Scholar
  15. 15.
    C.M. Will: The Confrontation between General Relativity and Experiment: A 1998 Update (Lecture notes from the 1998 SLAC Summer Institute on Particle Physics), gr-qc/9811036.Google Scholar
  16. 16.
    M.P. Haugan and C.M. Will: Modern tests of special relativity, Physics Today, May 1987, p. 69.Google Scholar
  17. 17.
    A.P. Lightman and D.L. Lee: Restricted Proof that theWeak Equivalence Principle Implies the Einstein Equivalence Principle, Phys. Rev. D 8, 364 (1973).ADSGoogle Scholar
  18. 18.
    C.M. Will: Gravitational red-shift measurements as tests of nonmetric theories of gravity, Phys. Rev. D 10, 2330 (1974).ADSMathSciNetGoogle Scholar
  19. 19.
    M.D. Gabriel and M.P. Haugan: Testing the Einstein Equivalence Principle: Atomic clocks and local Lorentz invariance, Phys. Rev. D 41, 2943 (1990).ADSGoogle Scholar
  20. 20.
    J.P. Turneaure, C.M. Will, B.F. Farrel, E.M. Mattison, and R.F.C. Vessot: Test of the principle of equivalence by a null gravitational red-shift experiment, Phys. Rev. 27, 1705 (1983).ADSGoogle Scholar
  21. 21.
    C. Alvarez and R.B. Mann: Testing the Equivalence Principle in the Quantum Regime, preprint (1996), Honorable mention in the Gravity Research Foundation Essay Contest (and references cited therein).Google Scholar
  22. 22.
    J.E. Horvath, E.A. Logiudice, C. Riveros, and H. Vucetich: Einstein equivalence principle and theories of gravitation: A gravitationally modified standard model, Phys. Rev. D 38, 1754 (1988).ADSMathSciNetGoogle Scholar
  23. 23.
    W.-T. Ni: Equivalence Principles and Electromagnetism, Phys. Rev. Lett. 38, 301 (1977); Bull. Am. Phys. Soc. 19, 655 (1974); A Nonmetric Theory of Gravity, preprint, Montana State University, Bozeman, Montana, USA (1973),
  24. 24.
    R.A. Puntigam, C. Lämmerzahl, and F.W. Hehl: Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Qaunt. Grav. 14, 1347 (1997).zbMATHCrossRefADSGoogle Scholar
  25. 25.
    S. Hojman, M.P. Rosenbaum, and L.C. Shepley: Gauge invariance, minimal coupling, and torsion, Phys. Rev. D 17, 3141 (1978).ADSMathSciNetGoogle Scholar
  26. 26.
    C. Lämmerzahl, Ch.J. Bordé: Testing the Dirac equation, this volume, p. 463Google Scholar
  27. 27.
    C. Lämmerzahl: Quantum Tests of Foundations of General Relativity, Class. Quantum Grav. 14, 13 (1998).CrossRefGoogle Scholar
  28. 28.
    N.D. Hari Dass: Test for C, P, and T Nonconservation in Gravitaton, Phys. Rev. Lett. 36, 393 (1976).CrossRefADSGoogle Scholar
  29. 29.
    N.D. Hari Dass: Experimental Tests for Some Quantum Effects in Gravitation, Ann. Physics (N.Y.) 107, 337 (1977).CrossRefADSGoogle Scholar
  30. 30.
    A. Peres: Test of the equivalence principle with spin, Phys. Rev. D 18, 2739 (1978).ADSGoogle Scholar
  31. 31.
    D. Colloday and V.A. Kostelecky: CPT-violation and the standard model, Phys. Rev. D 55, 6760 (1997).ADSGoogle Scholar
  32. 32.
    D. Colloday and V.A. Kostelecky: Lorentz-violating extension of the standard model, Phys. Rev. D 55, 6760 (1997).ADSGoogle Scholar
  33. 33.
    T. Damour and A.M. Polyakov: The string dilaton and a least action principle, Nucl. Physics B 423, 532(1994).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    T. Damour and A.M. Polyakov: String Theory and Gravity, Gen. Rel. Grav. 12, 1171 (1996).MathSciNetGoogle Scholar
  35. 35.
    T. Damour: Equivalence Principle and Clocks, to appear in the Proceedings of the 34th Rencontres de Moriond, “Gravitational Waves and Experimental Gravity”, January 1999, gr-qc/9904032.Google Scholar
  36. 36.
    J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos: Probing models of quantum space-time foam, gr-qc/9909085.Google Scholar
  37. 37.
    J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and G. Volkov: Gravitational-Recoil Effects on Fermion Propagation in Space-Time Foam, gr-qc/9911055.Google Scholar
  38. 38.
    J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia: Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84, to appear (2000).Google Scholar
  39. 39.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester: General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48, 393 (1976).CrossRefADSGoogle Scholar
  40. 40.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne'eman: Metric-affine gauge theory of gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance, Phys. Rep. 258, 1 (1995).CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    P. van Nieuwenhuizen: Supergravity, Phys. Rep. 68, 189 (1982).CrossRefGoogle Scholar
  42. 42.
    M.J. Du.: Kaluza-Klein theory in perspective, hep-th/9410046.Google Scholar
  43. 43.
    C.M. Will, C.M.: Violation of the Weak Equivalence Principle in Theories of Gravity with a Nonsymmetric Metric, Phys. Rev. Lett. 62, 369 (1989).CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    M.D. Gabriel, M.P. Haugan, R.B. Mann, and J.H. Palmer: Nonsymmetric gravitation theories and local Lorentz invariance, Phys. Rev. D 91, 2465 (1991).ADSGoogle Scholar
  45. 45.
    W. Vodel, H. Dittus, S. Nietzsche, H. Koch, J. v. Zameck Glyscinski, R. Neubert, S. Lochmann, C. Mehls, D. Lockowandt: High Sensitive DC SQUID Based Position Detectors for Application in Gravitational Experiments at the Drop Tower Bremen, this volume.Google Scholar
  46. 46.
    P. Touboul: Space Accelerometers Present Status, this volume, p.273.Google Scholar
  47. 47.
    R.C. Ritter, C.E. Goldblum, W.-T. Ni, G.T. Gillies, and C.C. Speake: Experimental test of equivalence principle with polarized masses, Phys. Rev. D 42, 977 (1990).ADSGoogle Scholar
  48. 48.
    R.C. Ritter, L.I. Winkler, and G.T. Gillies: Search for Anomalous Spin-Dependent Forces with a Polarized-Mass Torsion Pendulum, Phys. Rev. Lett. 70, 701 (1993).CrossRefADSGoogle Scholar
  49. 49.
    F.C. Witteborn and W.M. Fairbank: Experimental Comparison of the Graviational Force on Freely Falling Electrons and Metallic Electrons, Phys. Rev. Lett. 19, 1049 (1967).CrossRefADSGoogle Scholar
  50. 50.
    L. Koester: Veriffication of the equivalence principle of gravitational and inertial mass for the neutron, Phys. Rev. D 14, 907 (1976).ADSGoogle Scholar
  51. 51.
    J.-L. Staudenmann, S.A. Werner, R. Colella, A.W. Overhauser: Gravity and Inertia in Quantum Mechanics, Phys. Rev. A 21 1419 (1980).ADSGoogle Scholar
  52. 52.
    T.E. Chupp, R.J. Hoara, R.A. Loveman, E.R. Oteiza, J.M. Richardson, and M.E. Wagshul: Results of a New Test of Local Lorentz Invariance: A Search for Mass Anisotropy in 21Ne, Phys. Rev. Lett. 63, 1541 (1989).CrossRefADSGoogle Scholar
  53. 53.
    C. Lämmerzahl: Constraints on space-time torsion from Hughes-Drever experiments, Phys. Lett. A 228, 223 (1997).ADSGoogle Scholar
  54. 54.
    B. Mashhoon: Neutron Interferometry in a Rotating Frame of Reference, Phys. Rev. Lett. 61, 2639 (1988).CrossRefADSGoogle Scholar
  55. 55.
    B. Mashhoon: On the coupling of intrinsic spin with the rotation of the earth, Phys. Lett. A 198, 9 (1995).ADSGoogle Scholar
  56. 56.
    B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, and E.N. Fortson: Search for a Coupling of the Earth’s Gravitational Field to Nuclear Spins in Atomic Mercury, Phys. Rev. Lett. 68, 135 (1992).CrossRefADSGoogle Scholar
  57. 57.
    R.F.C. Vessot, M.W. Levine, E.M. Mattison, E.L. Blomberg, T.E. Hoffmann, G.U. Nystrom, B.F. Farrel, R. Decher, P.B. Eby, C.R. Baughter, J.W. Watts, D.L. Teuber, and F.D. Wills: Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081 (1980).CrossRefADSGoogle Scholar
  58. 58.
    R. Grieser, R. Klein, G. Huber, S. Dickopf, I. Klaft, P. Knobloch, P. Merz, F. Albrecht, M. Grieser, D. Habs, D. Schwalm, and T. Kühl: A test of special relativity with stored lithium ions, Appl. Phys. B 59, 127 (1994).CrossRefADSGoogle Scholar
  59. 59.
    J.D. Prestage, R.L. Tjoelker, and L. Maleki: Atomic clocks and variations of the fine structure constant, Phys. Rev. Lett. 74, 3511 (1995).CrossRefADSGoogle Scholar
  60. 60.
    B.E. Schaefer: Severe limits on variations of the speed of light with frequency, Phys. Rev. Lett. 82, 4964 (1999).CrossRefADSGoogle Scholar
  61. 61.
    M.P. Haugan and T.F. Kauffmann: A New Test of the Einstein Equivalence Principle and the Isotropy of Space, Phys. Rev. D 52, 3168 (1995).ADSGoogle Scholar
  62. 62.
    S.D. Billet et al.: Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett. 83, 2108 (1999).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Mark P. Haugan
    • 1
  • C. Lämmerzahl
    • 2
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations