Advertisement

High Sensitive DC SQUID Based Position Detectors for Application in Gravitational Experiments at the Drop Tower Bremen

  • Wolfgang Vodel
  • Hansjörg Dittus
  • Sandor Nietzsche
  • Helmar Koch
  • J. v. Zameck Glyscinski
  • Ralf Neubert
  • Stephan Lochmann
  • Carsten Mehls
  • D. Lockowandt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

Free fall tests for proving the Weak Equivalence Principle (WEP) have been rarely be done in history. Although they seem to be the natural experiments to test the equivalence of inertial and gravitational mass, best results for proofs of the WEP could be attained with torsion pendulum tests to an accuracy of 10-12. Pendulum tests are long term periodic experiments, whereas free fall tests on Earth can be carried out only for seconds causing certain limitations in principle. Nevertheless, very precise fall tests in the 10-12 to 10-13 range are possible and under preparation to be carried out on the Drop Tower Bremen for a free fall over 110 m. These tests require position detectors with an extremely high resolution in order to measure tiny displacements of freely falling test masses. Using SQUID-based sensing technique, the displacements can be determined with an accuracy of 2 x 10-14 m/√Hz. The SQUID system, developed and manufactured at Jena University, provides high sensitivity and extremely low intrinsic noise, especially at low frequencies. Some recent results are discussed.

Keywords

Test Mass Position Detector Test Body Drop Tube Weak Equivalence Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Roll, R.V. Krotkov, R.H. Dicke: The equivalence of inertial and passive gravitational mass, Ann. Phys. (N.Y.) 26, 442(1964).zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Harris, G.L. Smith, and H.E. Swanson: New tests of the universality of free fall, Phys. Rev. D 50, 3614 (1994)ADSGoogle Scholar
  3. 3.
    T.M.. Niebauer, M.P. McHugh, J.E. Faller: Galilean test for the fifth force, Phys. Rev. Lett. 59, 609 (1987).CrossRefADSGoogle Scholar
  4. 4.
    K. Kuroda, N. Mio: IEEE Trans. Instr. Meas. 38, 196 (1989).CrossRefADSGoogle Scholar
  5. 5.
    F. Barlier et al.: STEP Assessment Study Report, SCI(91)4, January 1991.Google Scholar
  6. 6.
    C.W.F. Everitt. P. Worden, L. Ryans-Culclager, R. Farnsworth: STEP NASA Research Announcement, NRA-96-HEDS-03, 19 March, 1997.Google Scholar
  7. 7.
    H. Dittus, Chr. Eigenbrod, U. Kaczmarczik, J. Middelberg, H.J. Rath, B. Schwark: High quality of microgravity environment during short time experiments on the Drop Tower Bremen, Proc. 7th Europ. Symp. on Materials and Fluid Sciences in Microgravity, European Space Agency (ESA-SP 295), p. 703 (Paris 1989).Google Scholar
  8. 8.
    H. Dittus: Drop Tower Bremen— A weightlessness laboratory on Earth, Endeavour, New Series, 15, 72(1991).CrossRefGoogle Scholar
  9. 9.
    H. Dittus, R. Greger, St. Lochmann, W. Vodel, H. Koch, S. Nietzsche, J. v. Zameck Glyscinski, C. Mehls, P. Mazilu: Testing the Weak Equivalence Principle at the Bremen Drop Tower: Report on recent developments, Class. Quantum Grav. 13, A43 (1996).zbMATHCrossRefADSGoogle Scholar
  10. 10.
    N. Lockerbie, X. Xu, A.V. Veryashkin. M.A. Hosey: The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment, Class. Quantum Grav. 13, 2041 (1996).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    W. Vodel, K. Mäkiniemi: An ultra low noise SQUID system for biomagnetic research, Measurement Science and Technology 3, 1155 (1992).CrossRefADSGoogle Scholar
  12. 12.
    W. Vodel, H. Koch, J. von Zameck Glyscinski, C. Mehls, S. Nietzsche: Application of High Performance DC SQUID Systems in Fundamental Physics, Proc. of 5th International Superconductive Electronics Conference, Nagoya, Japan, 18–21September, 1995.Google Scholar
  13. 13.
    W. Vodel, H. Koch, S. Nietzsche, J. von Zameck Glyscinski, H. Dittus, S. Lochmann, and C. Mehls: Low noise LTS SQUIDs for application in gravitational experiments, IEEE Transactions on Applied Superconductivity 7, 3343 (1997).CrossRefGoogle Scholar
  14. 14.
    S. Nietzsche: Aufbau und Test von Grundanordnungen für Positionsdetektoren mit SQUID, Diploma Thesis (University of Jena, 1996).Google Scholar
  15. 15.
    H.A. Chan and H.J. Paik: Superconducting gravity gradiometer for sensitive gravity measurements, Phys. Rev. D 35, 3551 (1987).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Wolfgang Vodel
    • 1
  • Hansjörg Dittus
    • 2
  • Sandor Nietzsche
    • 1
  • Helmar Koch
    • 1
  • J. v. Zameck Glyscinski
    • 1
  • Ralf Neubert
    • 1
  • Stephan Lochmann
    • 2
  • Carsten Mehls
    • 2
  • D. Lockowandt
    • 2
  1. 1.Institut für FestkörperphysikFriedrich-Schiller-Universität JenaGermany
  2. 2.Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)Universität BremenGermany

Personalised recommendations