Advertisement

Space Accelerometers: Present Status

  • Pierre Touboul
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

In view of space missions, for accurate recovery of the Earth gravity field, for the test of the equivalence principle and for the observation of gravity waves in particular, specific inertial sensors are developed exhibiting very high resolution and limited full scale range suited for in orbit operation. These sensors are constructed around a high density proof-mass with a very fine and stable silica gold coated core. The proof-mass position and attitude are measured with highly sensitive capacitive sensors and are controlled with electrostatic actuators. The configuration and the major design parameters of these instruments are described in relation to the expected performances. The present status of the development of these instruments is shown together with the associated space mission scientific objectives. The main experimental results obtained during the ground qualification of these accelerometers are also presented.

Keywords

Equivalence Principle Gravity Gradient Inertial Sensor Capacitive Sensor Electrostatic Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nati, A. Bernard, B. Foulon, P. Touboul.: ASTRE, a highly performant accelerometer for the low frequency range of the microgravity environment, 24th Symposium on space environmental control systems, Friedrichshafen, Germany (1994).Google Scholar
  2. 2.
    K.M. McPherson, M. Nati, P. Touboul, A. Schütte, G. Sablon: A summary of the Quasi-Steady Acceleration Environment On-Board STS-94 (MSL-1), NASA/TM-1999-208853, AIAA-99-0574, January 1999.Google Scholar
  3. 3.
    H. Hamacher: Characterisation and μg improvement for the Columbus orbiting facility, ESA Report SP-385, p. 209 (1996).Google Scholar
  4. 4.
    R. Laver: PXE accelerometer, Technical Information 031, Philips, 1997.Google Scholar
  5. 5.
    J.C. Radix: Systèmes inertiels à composents liés strap-down, Cepadues Ed., Toulouse France, 1991.Google Scholar
  6. 6.
    S.A. Foots, D.B. Grindeland: Model QA 3000 K-FLEX Accelerometer High Performance Tests Results, IEEE-0-7803-0468, 1992.Google Scholar
  7. 7.
    D. Janiaud, O. Le Traon, S. Muller, P. Bouniol: The VIA accelerometer, an occurate low cost miniature sensor, Symposium Gyro-Technology, Stuttgart Germany, 1998.Google Scholar
  8. 8.
    A. Cazenave, D. Dédié: proposition de mission pour μsatellite, CNES (1999).Google Scholar
  9. 9.
    O.L. Colombo: Geodetic theory, Rev. of Geophysics 25, 851 (1987).CrossRefADSGoogle Scholar
  10. 10.
    R. Rummel, O.L. Colombo: Gravity field determination from satellite gradiometry, Bull. Geod. 59, 233 (1985).CrossRefGoogle Scholar
  11. 11.
    A. Bernard, P. Touboul: A spaceborne gravity gradiometer for the nineties, IAG annual meeting Edinburgh U.K., 1989.Google Scholar
  12. 12.
    K. Danzmann et al.: LISA, Interferometer Space Antenna, MPQ 208, Garching, Germany, 1996.Google Scholar
  13. 13.
    C.W.F. Everitt et al.: Satellite Test of the Equivalence Principle ‘Quick STEP’ phase A study, report JPL D-12453, 1995.Google Scholar
  14. 14.
    R. Bonneville: GEOSTEP: a Gravitation Experiment in earth Orbiting Satellite to Test the Equivalence Principle, proceedings COSPAR 31, Birmingham, 1995.Google Scholar
  15. 15.
    T.J. Kacpura and J.C. Acevedo: Space Acceleration Measurement System for Free Flyers (SAMS-FF)-Initial test results, AIAA-98-0454.Google Scholar
  16. 16.
    R.E. Jenkins: Performance in orbit of the TRIAD disturbance compensation system, APL Technical Digest 12, 1973.Google Scholar
  17. 17.
    A. Bernard, M. Gay, R. Juillerat: The accelerometer CACTUS, AGARDograph, 254, 1982.Google Scholar
  18. 18.
    W.G. Lange, R.W. Dietrich: The MESA accelerometer for space application, NASA Conference Publication 3088, 1990.Google Scholar
  19. 19.
    J.E. Rice: OARE STS-78 (LMS-1). Final Report, Canopus Systems Inc., 1996.Google Scholar
  20. 20.
    H. Hammacher, R. Jilg, H.E. Richter: QSAM—An Approach to Detect Low Frequency Acceleration in Spacelab, 24th International Conference on Environmental Systems, Friedrichshafen Germany, SAE tech. paper 941362, 1994.Google Scholar
  21. 21.
    J.W. Parke: Null test of the gravitational inverse square law and the development of a superconducting six-axis accelerometer, Thesis, University of Maryland, 1990.Google Scholar
  22. 22.
    P. Touboul, B. Foulon, G.M. Le Clerc: The accelerometer ASTRE for the microgravity environment monitoring on board space laboratoires. Final Report 10/3825 PY, Onera Ed., Châtillon France, April 1996.Google Scholar
  23. 23.
    D. Horrière, B. Foulon, P. Touboul: ASTRE on MSL-1 Spacelab mission— Post mission analysis, Report 15/3825 DMPH/Y, ONERA Ed., Châtillon France, July 1998.Google Scholar
  24. 24.
    C. Reiberg: CHAMP a challenging micro-satellite payload for geophysical research and application, GFZ Final Report, Postdam, Germany, 1995.Google Scholar
  25. 25.
    R. Kasper: Satellite CHAMP, lecture given at 277th Jenaer Carl-Zeiss-Optikkolloquium, Jena, Germany, 1998.Google Scholar
  26. 26.
    P. Touboul, B. Foulon: Space accelerometer developments and drop tower experiments, Space Forum 4, 145 (1998).Google Scholar
  27. 27.
    B.D. Tapley: Gravity Recovery and Climate Experiment (GRACE), Proposal to NASA’s Earth System Science Pathfinder Program, 1996.Google Scholar
  28. 30.
    R. Rummel, F. Sanso, M. Van Gelderen, M. Brovelli, R. Koop, F. Migliaccio, E.J.O. Shramma and F. Sacerdote: Sperical Harmonics Analysis of Satellite Gradiometry, Neth. Geodetic Commission N.39 (New Series), 1993.Google Scholar
  29. 31.
    G. Balmino, F. Perosanz, R. Rummel, N. Sneeuw, H. Sünkel, P. Woodworth: Some views on dedicated gravity field missions: GRACE and GOCE, European Space Agency document, 1998.Google Scholar
  30. 32.
    P. Touboul, E. Willemenot, B. Foulon and V. Josselin: Accelerometers for CHAMP, GRACE, GOCE, synergy and evolution, Proceedings 2nd Joint Meeting of the IGC and IGeC commissions, Trieste 1998, Bolletino di Geophisicae, in press.Google Scholar
  31. 33.
    P. Touboul and G. Metris: μSCOPE, μSatellite à Compensation de traînée pour l’Observation du Principe d’Equivalence, proposition de mission ísatellite, CNES 1998.Google Scholar
  32. 34.
    Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Harris, G.L. Smith and H.E. Swanson: New tests of the universality of free fall, Phys. Rev. D 50 3614 (1994).ADSGoogle Scholar
  33. 35.
    J.O. Dickey: Linear laser ranging: continuing legacy of the Apollo program, Science 265, 482(1994).CrossRefADSGoogle Scholar
  34. 36.
    P. Touboul, M. Rodrigues, E. Willemenot, A. Bernard: Electrostatic accelerometers for the Equivalence Principle, Proc. Symposium of Fundamental Physics in Space, London UK (1995).Google Scholar
  35. 37.
    M. Rodrigues and P. Touboul: Specification de la charge utile pour le projet μSCOPE, Onera Châtillon France, Report RTS 27/3815 DMPH/Y (1999).Google Scholar
  36. 38.
    E. Willemenot: Pendule de torsion à suspension électrostatique, trés hautes résolution des accéléromètres spatiaux pour la physique fondamentale, Thèse (Paris XI, 1997).Google Scholar
  37. 39.
    V. Josselin: Etalonnage en orbite des accéléromètres ultrasensibles pour le test du principe d’équivalence, Thèse (Paris XI, 1999).Google Scholar
  38. 40.
    M. Rodrigues, P. Touboul, G.M. Le Clerc: The Inertial Reference Sensor CAESAR for the Laser Interferometer Space Antenna Mission, Symposium on Fundamental Physics in Space, London, UK, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Pierre Touboul
    • 1
  1. 1.Physics, Instrumentation and Sensing DepartmentOffice National d’Etudes et de Recherches AérospatialesChâtillon CedexFrance

Personalised recommendations